Levitation of very small but macroscopic objects is a rapidly developing interrogation technique for nanooptics and optomechanics. Paul traps are one mechanism for levitation of charged particles, which enables interrogation of novel materials or optically active samples in a virtually interaction-free environment, providing a test-bed for completely new experiments. Elementary traps have already been demonstrated for nano- and microparticles as a proof-of-principle for such experiments.
View Article and Find Full Text PDFWe present a semiclassical analytic model for spherical core-shell surface plasmon lasers. Within this model, we drop the widely used one-mode approximations in favor of fully electromagnetic Mie theory. This allows for incorporation of realistic gain relaxation rates that so far are massively underestimated.
View Article and Find Full Text PDFWe present a novel versatile method for one-by-one coupling of single nano- and microparticles. The particles are levitated in a segmented linear Paul trap, which is ideal for fast particle characterization and assembly of two or more preselected particles by electrostatic attraction. The final compound particles remain in the trap or can be deposited on other structures.
View Article and Find Full Text PDFRev Sci Instrum
November 2014
We developed a linear high-voltage amplifier for small capacitive loads consisting of a high-voltage power supply and a transistor amplifier. With this cost-effective circuit including only standard parts sinusoidal signals with a few volts can be amplified to 1.7 kVpp over a usable frequency range at large-signal response spanning four orders of magnitude from 20 Hz to 100 kHz under a load of 10 pF.
View Article and Find Full Text PDFIn this Letter we study the relations among shape, symmetry, and plasmon resonance shift in a single gold nanoparticle during laser melting. A beam of an argon ion laser is focused on a selected particle, while its optical and shape properties can be observed with the help of a combined dark-field/photoluminescence microscope and an atomic force microscope, respectively. Starting from a spherical shape, radiation pressure forms the melting gold particle into an upright standing rod on a glass substrate, showing a characteristic dipole scattering pattern.
View Article and Find Full Text PDFTapered optical fibers offer easy access to the evanescent field of their guided modes which is ideal for sensing applications. We introduce a soft-landing technique utilizing a linear Paul trap to select and place a single microparticle on the surface of a tapered optical fiber. This approach allows on-demand functionalization of fragile nanophotonic components with arbitrary particles, e.
View Article and Find Full Text PDF