Disorder at etched edges of graphene quantum dots (GQD) enables random all-to-all interactions between localized charges in partially filled Landau levels, providing a potential platform to realize the Sachdev-Ye-Kitaev (SYK) model. We use quantum Hall edge states in the graphene electrodes to measure electrical conductance and thermoelectric power across the GQD. In specific temperature ranges, we observe a suppression of electric conductance fluctuations and slowly decreasing thermoelectric power across the GQD with increasing temperature, consistent with recent theory for the SYK regime.
View Article and Find Full Text PDFWe model interactions following the Sachdev-Ye-Kitaev (SYK) framework in disordered graphene flakes up to 300 000 atoms in size (∼100 nm in diameter) subjected to an out-of-plane magnetic field B of 5-20 Tesla within the tight-binding formalism. We investigate two sources of disorder: (i) irregularities at the system boundaries, and (ii) bulk vacancies-for a combination of which we find conditions that could be favorable for the formation of the phase with Sachdev-Ye-Kitaev features under realistic experimental conditions above the liquid helium temperature.
View Article and Find Full Text PDFThe interplay of topological characteristics in real space and reciprocal space can lead to the emergence of unconventional topological phases. In this Letter, we implement a novel mechanism for generating higher-Chern flat bands on the basis of twisted bilayer graphene (TBG) coupled to topological magnetic structures in the form of the skyrmion lattice. In particular, we discover a scenario for generating || = 2 dispersionless electronic bands when the skyrmion periodicity and the moiré periodicity match.
View Article and Find Full Text PDFElectrons in quantum materials exhibiting coexistence of dispersionless (flat) bands piercing dispersive (steep) bands give rise to strongly correlated phenomena and are associated with unconventional superconductivity. We show that in twisted sandwiched graphene (TSWG)-a three-layer van der Waals heterostructure with a twisted middle layer-steep Dirac cones can coexist with dramatic band flattening at the same energy scale, if twisted by 1.5°.
View Article and Find Full Text PDF