In nature, molecular environments in proteins can sterically protect and stabilize reactive species such as organic radicals through non-covalent interactions. Here, we report a near-infrared fluorescent rotaxane in which the stabilization of a chemically labile squaraine fluorophore by the coordination of a tetralactam macrocycle can be controlled chemically and electrochemically. The rotaxane can be switched between two co-conformations in which the wheel either stabilizes or exposes the fluorophore.
View Article and Find Full Text PDFMolecular aggregation alters the optical properties of a system as fluorescence may be activated or quenched. This is usually described within the well-established framework of H- and J-aggregates. While H-aggregates show nonfluorescent blueshifted absorption bands with respect to the isolated monomer, J-aggregates are fluorescent displaying a redshifted peak.
View Article and Find Full Text PDFFluorescent dyes are applied in various fields of research, including solar cells and light-emitting devices, and as reporters for assays and bioimaging studies. Fluorescent dyes with an added high dipole moment pave the way to nonlinear optics and polarity sensitivity. Redox activity makes it possible to switch the molecule's photophysical properties.
View Article and Find Full Text PDF