The electrochemical metallization (ECM) mechanism is emerging as a promising approach for the development of optical memristors-nonvolatile memory systems proposed for use as artificial synapses in neuromorphic computing applications. ECM memristors offer exceptional operating dynamics and power efficiency compared to other systems, but challenges with reproducible cycle-to-cycle state switching and the absence of advanced optical functionalities hinder their integration into photonic systems. In this work, an ECM free-standing memristor structure is proposed, which simultaneously offers wavelength-dependent multilevel nonvolatile optical storage, volatile light modulation, and dynamic polarization control.
View Article and Find Full Text PDFRecent discoveries have revealed that indium tin oxide (ITO), due to the presence of an epsilon-near-zero (ENZ) point and suitable carrier concentration and mobility, can be used to modulate the refractive index, confine fields in the nanoscale, enhance nonlinear effects, achieve ultrafast light switching or to construct so-called time-varying media. While this potential positions ITO as a key material for future nanophotonic devices, producing ITO films with precisely engineered properties remains a significant challenge. Especially when the device's complex geometry or incorporated materials require the fabrication process to be conducted at substrate temperatures below 100 °C and without any post-annealing treatment.
View Article and Find Full Text PDF