Cognitive impairment in Down syndrome (DS) results from the abnormal expression of hundreds of genes. However, the impact of KCNJ6, a gene located in the middle of the 'Down syndrome critical region' of chromosome 21, seems to stand out. KCNJ6 encodes GIRK2 (KIR3.
View Article and Find Full Text PDFThe most distinctive feature of Down syndrome (DS) is moderate to severe cognitive impairment. Genetic, molecular, and neuronal mechanisms of this complex DS phenotype are currently under intensive investigation. It is becoming increasingly clear that the abnormalities arise from a combination of initial changes caused by triplication of genes on human chromosome 21 (HSA21) and later compensatory adaptations affecting multiple brain systems.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of neurodegeneration and cognitive dysfunction in the elderly. Identifying molecular signals that mitigate and reverse neurodegeneration in AD may be exploited therapeutically. Transgenic AD mice (PSAPP) exhibit learning and memory deficits at 9 and 11 months, respectively, with associated decreased expression of caveolin-1 (Cav-1), a membrane/lipid raft (MLR) scaffolding protein necessary for synaptic and neuroplasticity.
View Article and Find Full Text PDFObjective: Recent clinical trials targeting amyloid beta (Aβ) and tau in Alzheimer's disease (AD) have yet to demonstrate efficacy. Reviewing the hypotheses for AD pathogenesis and defining possible links between them may enhance insights into both upstream initiating events and downstream mechanisms, thereby promoting discovery of novel treatments. Evidence that in Down syndrome (DS), a population markedly predisposed to develop early onset AD, increased APP gene dose is necessary for both AD neuropathology and dementia points to normalization of the levels of the amyloid precursor protein (APP) and its products as a route to further define AD pathogenesis and discovering novel treatments.
View Article and Find Full Text PDFDown syndrome (DS; Trisomy 21) is the most common chromosomal disorder in humans. It has numerous associated neurologic phenotypes including intellectual disability, sleep apnea, seizures, behavioral problems, and dementia. With improved access to medical care, people with DS are living longer than ever before.
View Article and Find Full Text PDFNoninvasive stimulation of cells is crucial for the accurate examination and control of their function both at the cellular and the system levels. To address this need, we present a pioneering optical stimulation platform that does not require genetic modification of cells but instead capitalizes on unique optoelectronic properties of graphene, including its ability to efficiently convert light into electricity. We report the first studies of optical stimulation of cardiomyocytes via graphene-based biointerfaces (G-biointerfaces) in substrate-based and dispersible configurations.
View Article and Find Full Text PDFDown syndrome (DS) is the most frequent genetic cause of developmental abnormalities leading to intellectual disability. One notable phenomenon affecting the formation of nascent neural circuits during late developmental periods is developmental switch of GABA action from depolarizing to hyperpolarizing mode. We examined properties of this switch in DS using primary cultures and acute hippocampal slices from Ts65Dn mice, a genetic model of DS.
View Article and Find Full Text PDFA delicate interneuronal communication between pre- and postsynaptic membranes is critical for synaptic plasticity and the formation of memory. Evidence shows that membrane/lipid rafts (MLRs), plasma membrane microdomains enriched in cholesterol and sphingolipids, organize presynaptic proteins and postsynaptic receptors necessary for synaptic formation and signaling. MLRs establish a cell polarity that facilitates transduction of extracellular cues to the intracellular environment.
View Article and Find Full Text PDFDown syndrome (DS), trisomy 21, is caused by increased dose of genes present on human chromosome 21 (HSA21). The gene-dose hypothesis argues that a change in the dose of individual genes or regulatory sequences on HSA21 is necessary for creating DS-related phenotypes, including cognitive impairment. We focused on a possible role for Kcnj6, the gene encoding Kir3.
View Article and Find Full Text PDFBackground: Maintaining pH levels within the physiological norm is an important component of brain homeostasis. However, in some pathological or physiological conditions, the capacity of the pH regulatory system could be overpowered by various factors resulting in a transient or permanent alteration in pH levels. Such changes are often observed in pathological conditions associated with neuroinflammation.
View Article and Find Full Text PDFIt has been suggested that increased GABAergic innervation in the hippocampus plays a significant role in cognitive dysfunction in Down syndrome (DS). Bolstering this notion, are studies linking hyper-innervation of the dentate gyrus (DG) by GABAergic terminals to failure in LTP induction in the Ts65Dn mouse model of DS. Here, we used extensive morphometrical methods to assess the status of GABAergic interneurons in the DG of young and old Ts65Dn mice and their 2N controls.
View Article and Find Full Text PDFIn Down syndrome (DS) or trisomy of chromosome 21, the β-amyloid (Aβ) peptide product of the amyloid precursor protein (APP) is present in excess. Evidence points to increased APP gene dose and Aβ as playing a critical role in cognitive difficulties experienced by people with DS. Particularly, Aβ is linked to the late-life emergence of dementia as associated with neuropathological markers of Alzheimer's disease (AD).
View Article and Find Full Text PDFDown syndrome (DS), caused by trisomy 21, is the most common chromosomal disorder associated with developmental cognitive deficits. Despite intensive efforts, the genetic mechanisms underlying developmental cognitive deficits remain poorly understood, and no treatment has been proven effective. The previous mouse-based experiments suggest that the so-called Down syndrome critical region of human chromosome 21 is an important region for this phenotype, which is demarcated by Setd4/Cbr1 and Fam3b/Mx2.
View Article and Find Full Text PDFDown syndrome (DS), trisomy for chromosome 21, is the most common genetic cause of intellectual disability. The genomic regions on human chromosome 21 (HSA21) are syntenically conserved with regions on mouse chromosomes 10, 16, and 17 (Mmu10, Mmu16, and Mmu17). Recently, we created a genetic model of DS which carries engineered duplications of all three mouse syntenic regions homologous to HSA21.
View Article and Find Full Text PDFGenetic alterations or pharmacological treatments affecting endocannabinoid signaling have profound effects on synaptic and neuronal properties and, under certain conditions, may improve higher brain functions. Down syndrome (DS), a developmental disorder caused by triplication of chromosome 21, is characterized by deficient cognition and inevitable development of the Alzheimer disease (AD) type pathology during aging. Here we used JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL), to examine the effects of chronic MAGL inhibition on the behavioral, biochemical, and synaptic properties of aged Ts65Dn mice, a genetic model of DS.
View Article and Find Full Text PDFBackground: Traumatic brain injury (TBI) enhances pro-inflammatory responses, neuronal loss and long-term behavioral deficits. Caveolins (Cavs) are regulators of neuronal and glial survival signaling. Previously we showed that astrocyte and microglial activation is increased in Cav-1 knock-out (KO) mice and that Cav-1 and Cav-3 modulate microglial morphology.
View Article and Find Full Text PDFTrisomy 21 (Down syndrome, DS) is the most common genetic cause of developmental cognitive deficits, and the so-called Down syndrome critical region (DSCR) has been proposed as a major determinant of this phenotype. The regions on human chromosome 21 (Hsa21) are syntenically conserved on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. DSCR is conserved between the Cbr1 and Fam3b genes on Mmu16.
View Article and Find Full Text PDFCognitive impairment in Down syndrome (DS) is characterized by deficient learning and memory. Mouse genetic models of DS exhibit impaired cognition in hippocampally mediated behavioral tasks and reduced synaptic plasticity of hippocampal pathways. Enhanced efficiency of GABAergic neurotransmission was implicated in those changes.
View Article and Find Full Text PDFHuman trisomy 21 is the most frequent live-born human aneuploidy and causes a constellation of disease phenotypes classified as Down syndrome, which include heart defects, myeloproliferative disorder, cognitive disabilities and Alzheimer-type neurodegeneration. Because these phenotypes are associated with an extra copy of a human chromosome, the genetic analysis of Down syndrome has been a major challenge. To complement human genetic approaches, mouse models have been generated and analyzed based on evolutionary conservation between the human and mouse genomes.
View Article and Find Full Text PDFCognitive impairment in Down syndrome (DS) involves the hippocampus. In the Ts65Dn mouse model of DS, deficits in hippocampus-dependent learning and synaptic plasticity were linked to enhanced inhibition. However, the mechanistic basis of changes in inhibitory efficiency remains largely unexplored, and efficiency of the GABAergic synaptic neurotransmission has not yet been investigated in direct electrophysiological experiments.
View Article and Find Full Text PDFDown syndrome (DS) is mainly caused by the presence of an extra copy of human chromosome 21 (Hsa21) and is a leading genetic cause for developmental cognitive disabilities in humans. The mouse is a premier model organism for DS because the regions on Hsa21 are syntenically conserved with three regions in the mouse genome, which are located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. With the advance of chromosomal manipulation technologies, new mouse mutants have been generated to mimic DS at both the genotypic and phenotypic levels.
View Article and Find Full Text PDFDown syndrome (DS) is the most prevalent form of mental retardation caused by genetic abnormalities in humans. This has been successfully modeled in mice to generate the Ts65Dn mouse, a genetic model of DS. This transgenic mouse model shares a number of physical and functional abnormalities with people with DS, including changes in the structure and function of neuronal circuits.
View Article and Find Full Text PDFDown syndrome (DS) results from trisomy of human chromosome 21. Ts65Dn mice are an established model for DS and show several phenotypes similar to those in people with DS. However, there is little data on the structural plasticity of synapses in the trisynaptic pathway in the hippocampus.
View Article and Find Full Text PDFAs the genomic basis for Down syndrome (DS), human trisomy 21 is the most common genetic cause of intellectual disability in children and young people. The genomic regions on human chromosome 21 (Hsa21) are syntenic to three regions in the mouse genome, located on mouse chromosome 10 (Mmu10), Mmu16, and Mmu17. Recently, we have developed three new mouse models using chromosome engineering carrying the genotypes of Dp(10)1Yey/+, Dp(16)1Yey/+, or Dp(17)1Yey/+, which harbor a duplication spanning the entire Hsa21 syntenic region on Mmu10, Mmu16, or Mmu17, respectively.
View Article and Find Full Text PDFDown syndrome (DS) can be modeled in mice segmentally trisomic for mouse chromosome 16. Ts65Dn and Ts1Cje mouse models have been used to study DS neurobiological phenotypes including changes in cognitive ability, induction of long-term potentiation (LTP) in the fascia dentata (FD), the density and size of dendritic spines, and the structure of synapses. To explore the genetic basis for these phenotypes, we examined Ts1Rhr mice that are trisomic for a small subset of the genes triplicated in Ts65Dn and Ts1Cje mice.
View Article and Find Full Text PDF