Publications by authors named "Alexander Khrabrov"

Electron-beam plasma interaction has long been a topic of great interest. Despite the success of the quasilinear and weak turbulence theories, their validities are limited by the requirements of a sufficiently dense mode spectrum and a small wave amplitude. In this paper, we extensively study the collective processes of a mono-energetic electron beam emitted from a thermionic cathode propagating through a cold plasma by performing high-resolution two-dimensional particle-in-cell simulations and using analytical theories.

View Article and Find Full Text PDF

We study collective processes for an electron beam propagating through a background plasma using simulations and analytical theory. A new regime where the instability of a Langmuir wave packet can grow locally much faster than ion frequency is clearly identified. The key feature of this new regime is an electron modulational instability that rapidly creates a local Langmuir wave packet, which in its turn produces local charge separation and strong ion density perturbations because of the action of the ponderomotive force, such that the beam-plasma wave interaction stops being resonant.

View Article and Find Full Text PDF