Polarization-dependent gain (PDG) effect was studied in a conventional core-pumping configuration of bismuth-doped fiber amplifiers (BDFAs) based on PANDA-type phospho- and germanosilicate core fibers. The PDG value was determined as the gain difference between the orthogonal signal polarizations, which was found to be in range of 2.5-3 dB at total gain of >20 dB in such BDFAs.
View Article and Find Full Text PDFBismuth-doped fibers (BDFs) are considered nowadays as an essential part of the development of novel optical amplifiers, which can provide a significant upgrade to existing fiber optic telecommunication systems, securing multiband data transmission. In this paper, a series of BDF amplifiers (BDFAs) for O-, E-, and S-telecom bands based on a cladding pumping scheme using low-cost multimode semiconductor laser diodes at a wavelength of 0.7-0.
View Article and Find Full Text PDFDuring last decades there has been considerable interest in developing a fiber amplifier for the 1.3-[Formula: see text]m spectral region that is comparable in performance to the Er-doped fiber amplifier operating near 1.55 [Formula: see text]m.
View Article and Find Full Text PDFWe report experimental measurements and numerical calculations regarding the photostability of laser-active centers associated with bismuth (BACs) in Bi-doped GeO-SiO glass fibers under pumping at 1550 nm at different temperatures. It was discovered that BACs are unstable under 1550-nm pumping when the temperature is elevated to hundreds of degrees centigrade. A simple numerical model was proposed to account for the discovered instability which turned out to be in good agreement with the experimental data.
View Article and Find Full Text PDFThe effect of thermal annealing on the luminescent and laser properties of high-germania-core silicate fibers doped with bismuth was investigated. We studied the behavior of optical absorption assigned to the bismuth-related active centers associated with germanium as well as the behavior of unsaturable absorption in annealed fibers with respect to the Bi content. The dependence of the increment of the active center content on the Bi concentration in the annealed fibers was obtained.
View Article and Find Full Text PDF