We show that the conservation of the valley density in multivalley insulators is broken in an unexpected way by the electric field that drives the valley Hall effect. This implies that time-reversal-invariant fully gapped insulators, in which no bulk or edge state crosses the Fermi level, can support a valley Hall current in the bulk and yet show no valley density accumulation at the edges. Thus, the valley Hall effect cannot be observed in such systems.
View Article and Find Full Text PDFThe use of spirocycles in drug discovery and medicinal chemistry has been booming in the last two decades. This has clearly translated into the landscape of approved drugs. Among two dozen clinically used medicines containing a spirocycle, 50% have been approved in the 21st century.
View Article and Find Full Text PDFA small set of twelve compounds of a nitrofuran carboxamide chemotype was elaborated from a readily available 2,6-diazaspiro[3.4]octane building block, exploring diverse variants of the molecular periphery, including various azole substituents. The in vitro inhibitory activities of the synthesized compounds were assessed against H37Rv.
View Article and Find Full Text PDFNovel aryl-substituted homophthalic acids were cyclodehydrated to the respective homophthalic anhydrides for use in the Castagnoli-Cushman reaction. With a range of imines, this reaction proceeded smoothly and delivered hitherto undescribed 4-aryl-substituted tetrahydroisoquinolonic acids with remarkable diastereoselectivity, good yields and no need for chromatographic purification. These findings significantly extend the range of cyclic anhydrides employable in the Castagnoli-Cushman reaction and signify access to a novel substitution pattern around the medicinally relevant tetrahydroisoquinolonic acid scaffold.
View Article and Find Full Text PDFAn attempted Regitz diazo transfer onto homophthalic anhydride led to the discovery of an unexpected ring contraction, which gave -sulfonyl phthalide-3-carboxamide derivatives. The reaction is thought to proceed via a [3 + 2] cycloaddition of the substrate's enol form and the azide followed by a two-step fragmentation of the intermediate 1,2,3-triazoline with a loss of the nitrogen molecule.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2022
The advent of proteolysis-targeting chimaeras (PROTACs) mandates that new ligands for the recruitment of E3 ligases are discovered. The traditional immunomodulatory drugs (IMiDs) such as thalidomide and its analogues (all based on the phthalimide glutarimide core) bind to Cereblon, the substrate receptor of the CRL4A E3 ligase. We designed a thalidomide analogue in which the phthalimide moiety was replaced with benzotriazole, using an innovative synthesis strategy.
View Article and Find Full Text PDFMembrane proteins (MPs) play vital roles in the function of cells and are also major drug targets. Structural information on proteins is vital for understanding their mechanism of function and is critical for the development of drugs. However, obtaining high-resolution structures of membrane proteins, in particular, under native conditions is still a great challenge.
View Article and Find Full Text PDFIntroduction: Cereblon (CRBN), the substrate receptor of the CRL4 E3 ubiquitin ligase has been extensively studied due to its involvement in many biological processes. It has also been identified as the target for immunomodulatory drugs (IMiDs). CRBN ligands are also important components of proteolysis-targeting chimeras (PROTACs), special bifunctional constructs capable of targeted degradation of aberrantly acting proteins using the cell's ubiquitin-proteasome machinery.
View Article and Find Full Text PDF