Publications by authors named "Alexander Kaufman"

Asthma is characterized by airway inflammation, hyper-responsiveness, symptoms of dyspnea, wheezing and coughing. In most patients, asthma is well controlled using inhaled corticosteroids and bronchodilators. A minority of patients with asthma develop severe disease, which is frequently only partially responsive or even resistant to treatment with corticosteroids.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) play key roles in glioblastoma (GBM; astrocytoma grade IV) biology and are novel sources of biomarkers. EVs released from GBM tumors can cross the blood-brain-barrier into the periphery carrying GBM molecules, including small non-coding RNA (sncRNA). Biomarkers cargoed in circulating EVs have shown great promise for assessing the molecular state of brain tumors in situ.

View Article and Find Full Text PDF

Improving outcomes for diffuse glioma patients requires methods that can accurately and sensitively monitor tumour activity and treatment response. Extracellular vesicles (EV) are membranous nanoparticles that can traverse the blood-brain-barrier, carrying oncogenic molecules into the circulation. Measuring clinically relevant glioma biomarkers cargoed in circulating EVs could revolutionise how glioma patients are managed.

View Article and Find Full Text PDF

Thiamin, or vitamin B1, is crucial for brain function. In its active form, thiamin pyrophosphate (TPP), it is a co-enzyme for several enzymes, including transketolase. Transketolase is an important enzyme in the non-oxidative branch of the pentose phosphate pathway (PPP), a pathway responsible for generating reducing equivalents, which is essential for energy transduction and for generating ribose for nucleic acid synthesis.

View Article and Find Full Text PDF
Article Synopsis
  • Drugs of abuse, like alcohol, can lead to dependency and brain damage, affecting areas crucial for cognition.
  • High-throughput technologies, including cDNA microarray and proteomics, are being used to analyze gene and protein expression in human brain tissue from substance abuse patients and animal models.
  • Despite the limitations of current proteomics techniques, emerging studies are proposing new hypotheses to better understand the complexities of substance-related disorders.
View Article and Find Full Text PDF

The frontal lobes, particularly the prefrontal region, have been of a great interest to researchers examining human behaviour and the origins of medical conditions involving disturbances in cognitive functions. However, further characterisation of this brain region is necessary to help understand the mechanisms of its disturbance in various disease processes. The work presented here demonstrates the first normative proteomic comparison of the soluble fractions of adjacent grey and white matter of a single brain area with a specific cytoarchitecture, Brodmann area 9 (BA9; part of the dorsolateral prefrontal region).

View Article and Find Full Text PDF

Background: Cerebellar changes are commonly associated with alcoholism and chronic alcohol consumption can produce profound impairments in motor functioning and various aspects of cognition. Although the mechanisms underlying alcohol-induced changes in the cerebellar vermis are poorly understood, observations in the alcoholic vermis are thought to be consequential to common alcohol-related factors, particularly thiamine deficiency.

Methods: In the present study, we used a proteomics-based approach to compare protein expression profiles of the cerebellar vermis from human alcoholic individuals (both neurologically uncomplicated and alcoholic individuals complicated with liver cirrhosis) and healthy control brains.

View Article and Find Full Text PDF

Alcoholic patients commonly experience cognitive decline. It is postulated that cognitive dysfunction is caused by an alcohol-induced region-selective brain damage, particularly to the prefrontal region, and grey and white matter may be affected differently. We used a proteomics-based approach to compare protein expression profiles of the dorsolateral prefrontal cortex (Brodmann area 9 (BA9)) from human alcoholic and healthy control brains.

View Article and Find Full Text PDF

Neuroimaging and post-mortem studies indicate that chronic alcohol use induces global changes in brain morphology, such as cortical and subcortical atrophy. Recent studies have shown that frontal lobe structures are specifically susceptible to alcohol-related brain damage and shrinkage in this area is largely due to a loss of white matter. This may explain the high incidence of cognitive dysfunction observed in alcoholics.

View Article and Find Full Text PDF