Publications by authors named "Alexander Kamb"

Article Synopsis
  • - The study presents a novel cell therapy called Tmod that uses antigens like EGFR and HLA-E, commonly found on cancer cells, to create targeted attacks while sparing noncancerous cells.
  • - Noncancerous cells are protected from the therapy due to an inhibitory receptor that modulates the presence of CAR on their surface, triggered by a specific HLA allele often missing in many solid tumors.
  • - Mouse models show that Tmod can effectively prevent toxicity from CAR treatments and manage immune responses without requiring extra gene-editing, suggesting its potential for easy, off-the-shelf therapeutic applications.
View Article and Find Full Text PDF

Clinical applications of CAR-T cells are limited by the scarcity of tumor-specific targets and are often afflicted with the same on-target/off-tumor toxicities that plague other cancer treatments. A new promising strategy to enforce tumor selectivity is the use of logic-gated, two-receptor systems. One well-described application is termed Tmod™, which originally utilized a blocking inhibitory receptor directed towards HLA-I target antigens to create a protective NOT gate.

View Article and Find Full Text PDF

Innovative cell-based therapies are important new weapons in the fight against difficult-to-treat cancers. One promising strategy involves cell therapies equipped with multiple receptors to integrate signals from more than one antigen. We developed a specific embodiment of this approach called Tmod, a two-receptor system that combines activating and inhibitory inputs to distinguish between tumor and normal cells.

View Article and Find Full Text PDF

Immune cells that are engineered with receptors to integrate signals from multiple antigens offer a promising route to achieve the elusive property of therapeutic selectivity in cancer patients. Several types of multi-signal integrators have been described, among them mechanisms that pair activating and inhibitory receptors which are termed NOT gates by analogy to logical operations performed by machines. Here we review one such NOT-gated signal integrator called the Tmod system which is being developed for patients with solid tumors.

View Article and Find Full Text PDF

Progress toward improved solid-tumor treatment has long been hindered by the lack of truly tumor-specific targets. We have developed an approach to T cell therapy based on a dual-receptor system called Tmod™ that addresses this problem. The Tmod system exploits one of the few common genetic differences between tumor and normal cells: loss of heterozygosity (LOH).

View Article and Find Full Text PDF

The gene product [carcinoembryonic antigen (CEA)] is an attractive target for colorectal cancer because of its high expression in virtually all colorectal tumors and limited expression in most healthy adult tissues. However, highly active CEA-directed investigational therapeutics have been reported to be toxic, causing severe colitis because CEA is expressed on normal gut epithelial cells. Here, we developed a strategy to address this toxicity problem: the Tmod dual-signal integrator.

View Article and Find Full Text PDF

Background: Mesothelin (MSLN) is a classic tumor-associated antigen that is expressed in lung cancer and many other solid tumors. However, MSLN is also expressed in normal mesothelium which creates a significant risk of serious inflammation for MSLN-directed therapeutics. We have developed a dual-receptor (Tmod™) system that exploits the difference between tumor and normal tissue in a subset of patients with defined heterozygous gene loss (LOH) in their tumors.

View Article and Find Full Text PDF

Unlabelled: Neoantigens are among the most intriguing potential immuno-oncology targets because, unlike many cancer targets that are expressed on normal tissues, they are by definition restricted to cancer cells. Medicines directed at common neoantigens such as mutant KRAS are especially interesting because they may offer the convenience and cost of an off-the-shelf therapy. However, all common KRAS mutations produce proteins that differ from the wild type at a single amino acid, creating challenges for molecular discrimination.

View Article and Find Full Text PDF

Cell therapy is an emerging therapeutic modality with the power to exploit new cancer targets and potentially achieve positive outcomes for patients with few other options. Like all synthetic treatments, cell therapy has the risk of toxicity via unpredicted off-target behavior. We describe an empirical method to model off-tumor, off-target reactivity of receptors used for investigational T cell therapies.

View Article and Find Full Text PDF

Next-generation T-cell therapies will likely continue to utilize T-cell receptors (TCRs) and chimeric antigen receptors (CARs) because each receptor type has advantages. TCRs often possess exceptional properties even when tested unmodified from patients' T cells. CARs are generally less sensitive, possibly because their ligand-binding domains are grafted from antibodies selected for binding affinity or avidity and not broadly optimized for a functional response.

View Article and Find Full Text PDF

Though TCRs have been subject to limited engineering in the context of therapeutic design and optimization, they are used largely as found in nature. On the other hand, CARs are artificial, composed of different segments of proteins that function in the immune system. This characteristic raises the possibility of altered response to immune regulatory stimuli.

View Article and Find Full Text PDF

We designed variant human TCRs composed of the full-length TCRα/β or extracellular and transmembrane domains of the associated CD3 subunits fused to polypeptides derived from proteins thought to either enhance or inhibit normal T cell function. First, we showed that the C termini of both the TCR α- and β-chains can accommodate specific additional sequences, without abrogating complex formation or acute sensitivity of the receptor. Replacement of ITAMs with ITIM-containing intracellular domains inverted the TCR signal (i.

View Article and Find Full Text PDF

T-cell cancer therapy is a clinical field flush with opportunity.  It is part of the revolution in immuno-oncology, most apparent in the dramatic clinical success of PD-1/CTLA-4 antibodies and chimeric antigen receptor T-cells (CAR-Ts) to cure certain melanomas and lymphomas, respectively.  Therapeutics based on T cells ultimately hold more promise because of their capacity to carry out complex behaviors and their ease of modification via genetic engineering.

View Article and Find Full Text PDF

In 2013, an innovative MAGE-A3-directed cancer therapeutic of great potential value was terminated in the clinic because of neurotoxicity. The safety problems were hypothesized to originate from off-target T-cell receptor activity against a closely related MAGE-A12 peptide. A combination of published and new data led us to test this hypothesis with current technology.

View Article and Find Full Text PDF

Cell therapy is poised to play a larger role in medicine, most notably for immuno-oncology. Despite the recent success of CAR-T therapeutics in the treatment of blood tumors and the rapid progress toward improved versions of both CAR- and TCR-Ts, important analytical aspects of preclinical development and manufacturing of engineered T cells remain immature. One limiting factor is the absence of robust multivariate assays to disentangle key parameters related to function of engineered effector cells, especially in the peptide-MHC (pMHC) target realm, the natural ligand for TCRs.

View Article and Find Full Text PDF

We describe an approach to cancer therapy based on exploitation of common losses of genetic material in tumor cells (loss of heterozygosity) (Basilion et al., 1999; Beroukhim et al., 2010).

View Article and Find Full Text PDF

Chimeric antigen receptors (CARs) and their parent signaling molecule, the T cell receptor (TCR), are fascinating proteins of increasing relevance to disease therapy. Here we use a collection of 1221 pMHC-directed CAR constructs representing 10 pMHC targets to study aspects of CAR structure-activity relationships (SAR), with particular focus on the extracellular and transmembrane structural components. These experiments that involve pMHC targets whose number/cell can be manipulated by peptide dosing in vitro enable systematic analysis of the SAR of CARs in carefully controlled experimental situations (Harris and Kranz, 2016).

View Article and Find Full Text PDF

Cell therapy using T cell receptors (TCRs) and chimeric antigen receptors (CARs) represents a new wave of immunotherapies garnering considerable attention and investment. Further progress in this area of medicine depends in part on improving the functional capabilities of the engineered components, while maintaining the overall size of recombinant constructs to ensure their compatibility with existing gene delivery vehicles. We describe a single-variable-domain TCR (svd TCR) that utilizes only the variable domain of the β chain (Vβ).

View Article and Find Full Text PDF

This editorial introduces the Preclinical Reproducibility and Robustness channel on F1000Research, which has been created to encourage and facilitate open and transparent publication and discussion of confirmatory and non-confirmatory studies in biomedical research.

View Article and Find Full Text PDF

Resistance to FLT3 inhibitors is a serious clinical issue in treating acute myelogenous leukemia (AML). AMG 925, a dual FLT3/CDK4 inhibitor, has been developed to overcome this resistance. It is hypothesized that the combined inhibition of FLT3 and CDK4 may reduce occurrence of the FLT3 resistance mutations, and thereby prolong clinical responses.

View Article and Find Full Text PDF

We describe the structural optimization of a lead compound 1 that exhibits dual inhibitory activities against FLT3 and CDK4. A series of pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine derivatives was synthesized, and SAR analysis, using cell-based assays, led to the discovery of 28 (AMG 925), a potent and orally bioavailable dual inhibitor of CDK4 and FLT3, including many FLT3 mutants reported to date. Compound 28 inhibits the proliferation of a panel of human tumor cell lines including Colo205 (Rb(+)) and U937 (FLT3(WT)) and induced cell death in MOLM13 (FLT3(ITD)) and even in MOLM13 (FLT3(ITD, D835Y)), which exhibits resistance to a number of FLT3 inhibitors currently under clinical development.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) remains a serious unmet medical need. Despite high remission rates with chemotherapy standard-of-care treatment, the disease eventually relapses in a major proportion of patients. Activating Fms-like tyrosine kinase 3 (FLT3) mutations are found in approximately 30% of patients with AML.

View Article and Find Full Text PDF

Sphingosine kinases (SPHKs) are enzymes that phosphorylate the lipid sphingosine, leading to the formation of sphingosine-1-phosphate (S1P). In addition to the well established role of extracellular S1P as a mitogen and potent chemoattractant, SPHK activity has been postulated to be an important intracellular regulator of apoptosis. According to the proposed rheostat theory, SPHK activity shifts the intracellular balance from the pro-apoptotic sphingolipids ceramide and sphingosine to the mitogenic S1P, thereby determining the susceptibility of a cell to apoptotic stress.

View Article and Find Full Text PDF