A detailed investigation of the liquid-state polymerization of diacetylenes by calorimetric (DSC) and spectroscopic (in situ EPR) thermal analysis techniques is performed. Isoconversional kinetic analysis of the calorimetric data reveals that liquid-state polymerization is governed by a well-defined rate-limiting step as evidenced by a nearly constant isoconversional activation energy. By comparison, solid-state polymerization demonstrates isoconversional activation energy that varies widely, signifying multistep kinetics behavior.
View Article and Find Full Text PDF