Objective: The focus of this modified Delphi study was to investigate and build consensus regarding the medical management of children with moderate and severe acute spinal cord injury (SCI) during their initial inpatient hospitalization. This impetus for the study was based on the AANS/CNS guidelines for pediatric SCI published in 2013, which indicated that there was no consensus provided in the literature describing the medical management of pediatric patients with SCIs.
Methods: An international, multidisciplinary group of 19 physicians, including pediatric neurosurgeons, orthopedic surgeons, and intensivists, were asked to participate.
Introduction: The purpose of this study is to determine if delta waves, measured by magnetoencephalography (MEG), increase in adolescents due to a sports concussion.
Methods: Twenty-four adolescents (age 14-17) completed pre- and postseason MRI and MEG scanning. MEG whole-brain delta power was calculated for each subject and normalized by the subject's total power.
This study evaluated head impact exposure (HIE) metrics in relation to individual-level determinants of HIE. Youth (n = 13) and high school (n = 21) football players were instrumented with the Head Impact Telemetry (HIT) system during one season. Players completed the Trait-Robustness of Self-Confidence Inventory (TROSCI), Sports Climate Questionnaire (SCQ), and Competitive Aggressiveness and Anger Scale (CAAS), measuring self-confidence, perceived coach support, and competitive aggressiveness, respectively.
View Article and Find Full Text PDFObjective: Youth football athletes are exposed to repetitive subconcussive head impacts during normal participation in the sport, and there is increasing concern about the long-term effects of these impacts. The objective of the current study was to determine if strain-based cumulative exposure measures are superior to kinematic-based exposure measures for predicting imaging changes in the brain.
Methods: This prospective, longitudinal cohort study was conducted from 2012 to 2017 and assessed youth, male football athletes.
Objective: The goal of this study was to assess the social determinants that influence access and outcomes for pediatric neurosurgical care for patients with Chiari malformation type I (CM-I) and syringomyelia (SM).
Methods: The authors used retro- and prospective components of the Park-Reeves Syringomyelia Research Consortium database to identify pediatric patients with CM-I and SM who received surgical treatment and had at least 1 year of follow-up data. Race, ethnicity, and insurance status were used as comparators for preoperative, treatment, and postoperative characteristics and outcomes.
Approximately 3.5 million youth and adolescents in the US play football, a sport with one of the highest rates of concussion. Repeated subconcussive head impact exposure (HIE) may lead to negative neurological sequelae.
View Article and Find Full Text PDFObjective: The objective of this study was to characterize changes in head impact exposure (HIE) across multiple football seasons and to determine whether changes in HIE correlate with changes in imaging metrics in youth football players.
Methods: On-field head impact data and pre- and postseason imaging data, including those produced by diffusion tensor imaging (DTI), were collected from youth football athletes with at least two consecutive seasons of data. ANCOVA was used to evaluate HIE variations (number of impacts, peak linear and rotational accelerations, and risk-weighted cumulative exposure) by season number.
The purpose of this study is to assess the relationship between regional white matter diffusion imaging changes and finite element strain measures in nonconcussed youth football players. Pre- and post-season diffusion-weighted imaging was performed in 102 youth football subject-seasons, in which no concussions were diagnosed. The diffusion data were normalized to the IXI template.
View Article and Find Full Text PDFRepetitive head impact (RHI) exposure in collision sports may contribute to adverse neurological outcomes in former players. In contrast to a concussion, or mild traumatic brain injury, "subconcussive" RHIs represent a more frequent and asymptomatic form of exposure. The neural network-level signatures characterizing subconcussive RHIs in youth collision-sport cohorts such as American Football are not known.
View Article and Find Full Text PDFTo reduce head impact exposure (HIE) in youth football, further understanding of the context in which head impacts occur and the associated biomechanics is needed. The objective of this study was to evaluate the effect of contact characteristics on HIE during player versus player contact scenarios in youth football. Head impact data and time-synchronized video were collected from 4 youth football games over 2 seasons in which opposing teams were instrumented with the Head Impact Telemetry (HIT) System.
View Article and Find Full Text PDFWith the concern of concussion risk and repetitive head impacts in youth football, organizations have adopted rules that limit contact during practice. However, rule changes are not ubiquitous among organizations and are challenging to monitor and enforce. Ultimately, football practice activities are determined by coaches, but it is unknown whether providing objective data to coaches relating activities to their athletes' head impact exposure (HIE) would alter practice structure or help reduce HIE.
View Article and Find Full Text PDFAthletes participating in contact sports are exposed to repetitive subconcussive head impacts that may have long-term neurological consequences. To better understand these impacts and their effects, head impacts are often measured during football to characterize head impact exposure and estimate injury risk. Despite widespread use of kinematic-based metrics, it remains unclear whether any single metric derived from head kinematics is well-correlated with measurable changes in the brain.
View Article and Find Full Text PDFObjective: There is a growing body of literature informing efforts to improve the safety of football; however, research relating on-field activity to head impacts in youth football is limited. Therefore, the objective of this study was to compare head impact exposure (HIE) measured in game plays among 3 youth football teams.
Methods: Head impact and video data were collected from athletes (ages 10-13 years) participating on 3 youth football teams.
Objective: Limiting contact in football practice can reduce the number of head impacts a player receives, but further research is needed to inform the modification of optimal drills that mitigate head impact exposure (HIE) while the player develops the skills needed to safely play the game. This study aimed to compare HIE in practice drills among 6 youth football teams and to evaluate the effect of a team on HIE.
Methods: On-field head impact data were collected from athletes (ages 10–13 years) playing on 6 local youth football teams (teams A–F) during all practices using the Head Impact Telemetry System.
During normal participation in football, players are exposed to repetitive subconcussive head impacts, or impacts that do not result in signs and symptoms of concussion. To better understand the effects of repetitive subconcussive impacts, the biomechanics of on-field head impacts and resulting brain deformation need to be well characterized. The current study evaluates local brain response to typical youth football head impacts using the atlas-based brain model (ABM), an anatomically accurate brain finite element (FE) model.
View Article and Find Full Text PDFOBJECTIVESpine surgery is less common in children than adults. These surgeries, like all others, are subject to complications such as bleeding, infection, and CSF leak. The rate of incidental durotomy in the pediatric population, and its associated complications, has scarcely been reported in the literature.
View Article and Find Full Text PDFHead impact exposure (HIE) is often summarized by the total exposure measured during the season and does not indicate how the exposure was accumulated, or how it varied during the season. Therefore, the objective of this study was to compare HIE during pre-season, the first and second halves of the regular season, and playoffs in a sample of youth football players (n = 119, aged 9-13 years). Athletes were divided into one of four exposure groups based on quartiles computed from the distribution of risk-weighted cumulative exposure (RWE).
View Article and Find Full Text PDFOBJECTIVE This study evaluated the frequency, magnitude, and location of head impacts in practice drills within a youth football team to determine how head impact exposure varies among different types of drills. METHODS On-field head impact data were collected from athletes participating in a youth football team for a single season. Each athlete wore a helmet instrumented with a Head Impact Telemetry (HIT) System head acceleration measurement device during all preseason, regular season, and playoff practices.
View Article and Find Full Text PDFThe purpose of this study was to determine whether the effects of cumulative head impacts during a season of high school football produce changes in diffusional kurtosis imaging (DKI) metrics in the absence of clinically diagnosed concussion. Subjects were recruited from a high school football team and were outfitted with the Head Impact Telemetry System (HITS) during all practices and games. Biomechanical head impact exposure metrics were calculated, including: total impacts, summed acceleration, and Risk Weighted Cumulative Exposure (RWE).
View Article and Find Full Text PDFPediatric intramedullary spinal cord astrocytomas are rare, and the majority are low grade, typically carrying a low risk of mortality, but a high risk of morbidity. Quality of life is, therefore, an important consideration in treating concomitant progressive kyphoscoliosis. Compared with fusion-based spinal stabilization, fusionless techniques may limit some complications related to early instrumentation of the developing spine.
View Article and Find Full Text PDFBrain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma.
View Article and Find Full Text PDFThe aim of this study was to determine whether the cumulative effects of head impacts from a season of high school football produce magnetic resonance imaging (MRI) measureable changes in the brain in the absence of clinically diagnosed concussion. Players from a local high school football team were instrumented with the Head Impact Telemetry System (HITS™) during all practices and games. All players received pre- and postseason MRI, including diffusion tensor imaging (DTI).
View Article and Find Full Text PDFBackground Context: Whereas arthrodesis is the most common surgical intervention for the treatment of symptomatic cervical degenerative disc disease, arthroplasty has become increasingly more popular over the past decade. Although literature exists comparing the effects of anterior cervical discectomy and fusion and cervical total disc replacement (CTDR) on neck kinematics and loading, the vast majority of these studies apply only quasi-static, noninjurious loading conditions to a segment of the cervical spine.
Purpose: The objective of this study was to investigate the effects of arthrodesis and arthroplasty on biomechanical neck response during a simulated frontal automobile collision with air bag deployment.