Aim: Characterize pharmacokinetics, pharmacodynamics, and safety/tolerability of USL261 in geriatric adults to inform its potential for treating bouts of increased seizure activity.
Methods: Phase 1, randomized, double-blind, 2-way crossover study in healthy geriatric (≥65years; n=18) and non-geriatric (18-40years; n=12) adults evaluated single USL261 doses (2.5 and 5.
The population pharmacokinetic model reported here was developed using data from 2 phase 2 trials of irinotecan for treatment of malignant glioma to quantify the impact of concomitant therapy with enzyme-inducing antiepileptic drugs (EIAEDs) on irinotecan pharmacokinetics. Patients received weekly irinotecan doses of 100 to 400 mg/m(2) , and plasma samples were collected and analyzed for irinotecan and its APC, SN-38, and SN-38G metabolites. Nonlinear mixed-effects modeling was employed for population pharmacokinetic analysis.
View Article and Find Full Text PDFSulindac is a prescription-based non-steroidal anti-inflammatory drug (NSAID) that continues to be actively investigated as a candidate cancer chemoprevention agent. To further current understanding of sulindac bioavailability, metabolism, and disposition, we developed a population pharmacokinetic model for the parent compound and its active metabolites, sulindac sulfide, and exisulind. This analysis was based on data from 24 healthy subjects who participated in a bioequivalence study comparing two formulations of sulindac.
View Article and Find Full Text PDFDue to its potential as an antibiotic target, E. coli peptide deformylase (PDF(Ec)) serves as a model enzyme system for inhibitor design. While investigating the structural-functional and inhibitory features of this enzyme, we unexpectedly discovered that 2-amino-5-mercapto-1,3,4-thiadiazole (AMT) served as a slow-binding inhibitor of PDF(Ec) when the above compound was dissolved only in dimethylformamide (DMF), but not in any other solvent, and allowed to age.
View Article and Find Full Text PDFWe investigated the binding of a naturally occurring antibiotic, actinonin, to the Ni(2+)-reconstituted recombinant form of Escherichia coli peptide deformylase (PDF(Ec)) via isothermal titration microcalorimetry. The binding data conformed to both exothermic and endothermic phases with magnitudes of DeltaG degrees , DeltaH degrees , and TDeltaS degrees being equal to -12, -2.7, and 9.
View Article and Find Full Text PDFPeptide deformylase (PDF) catalyzes the removal of formyl group from the N-terminal methionine residues of nascent proteins in prokaryotes, and this enzyme is a high priority target for antibiotic design. In pursuit of delineating the structural-functional features of Escherichia coli PDF (EcPDF), we investigated the mechanistic pathway for the guanidinium chloride (GdmCl)-induced unfolding of the enzyme by monitoring the secondary structural changes via CD spectroscopy. The experimental data revealed that EcPDF is a highly stable enzyme, and it undergoes slow denaturation in the presence of varying concentrations of GdmCl.
View Article and Find Full Text PDFIn the current understanding of exocytosis at the nerve terminal, the C2 domain of synaptotagmin (C2A) is presumed to bind Ca2+ and the membrane in a stepwise fashion: cation then membrane as cation increases the affinity of protein for membrane. Fluorescence spectroscopy data were gathered over a variety of lipid and Ca2+ concentrations, enabling the rigorous application of microscopic binding models derived from partition functions to differentiate between Ca2+ and phosphatidylserine contributions to binding. The data presented here are in variance with previously published models, which were based on the Hill approximation.
View Article and Find Full Text PDF