Publications by authors named "Alexander Jonsson"

Replicating tissue barriers is critical for generating relevant in vitro models for evaluating novel therapeutics. Today, this is commonly done using tissue culture inserts with a plastic membrane, which generates an apical and a basal side. Besides providing support for the cells, these membranes come far from emulating their native counterpart, the basement membrane, which is a nanofibrillar, protein-based matrix.

View Article and Find Full Text PDF

Physiologically relevant human skin models that include key skin cell types can be used fordrug testing, skin pathology studies, or clinical applications such as skin grafts. However, there is still no golden standard for such a model. We investigated the potential of a recombinant functionalized spider silk protein, FN-silk, for the construction of a dermal, an epidermal, and a bilayered skin equivalent (BSE).

View Article and Find Full Text PDF

FluorAcryl 3298 (FA) is a UV-curable fluoroacrylate polymer commonly employed as a chemically resistant, hydrophobic, and oleophobic coating. Here, FA was used in a cleanroom-based microstructuring process to fabricate hydrophilic-in-hydrophobic (HiH) micropatterned surfaces containing femtoliter-sized well arrays. A short protocol involving direct UV photopatterning, an etching step, and final recovery of the hydrophobic properties of the polymer produced patterned substrates with micrometer resolution.

View Article and Find Full Text PDF

SMAC antagonization of cIAP1/2 in T 17 cells upregulates cell adhesion and cytoskeleton genes through the NIK-RelB and p52 axis. SMAC also increases the homotypic interactions of T 17 cells through a non-canonical NF-κB- and integrin-mediated mechanism resulting in increased ability of T 17 cells to withstand shear stress.

View Article and Find Full Text PDF

In experimental studies, pancreatic islet microvasculature is essential for islet endocrine function and mass, and islet vascular morphology is altered in diabetic subjects. Even so, almost no information is available concerning human islet microvascular endothelial cell (MVEC) physiology and gene expression. In this study, islets and exocrine pancreatic tissue were acquired from organ donors with normoglycemia or impaired glucose metabolism (IGM) immediately after islet isolation.

View Article and Find Full Text PDF

With the increasing interest in high throughput screening and parallel assays, laboratories around the world inevitably find themselves in need of driving a multitude of fluid lines to facilitate their large scale studies. The comparatively low cost and no-fluid-contact design of peristaltic pumps make them the go-to systems for such ventures, but using commercially available pumping systems this still becomes a costly endeavor at typically $250-$1000 per pump line. Here we have developed an alternative, a peristaltic pump that can be fabricated in most research laboratories using 3D-printing and readily available off-the-shelf parts.

View Article and Find Full Text PDF

Viral infection of the insulin-producing cells in the pancreas has been proposed in the etiology of type 1 diabetes. Protein kinase R (PKR) is a cytoplasmic protein activated through phosphorylation in response to cellular stress and particularly viral infection. As PKR expression in pancreatic beta-cells has been interpreted as a viral footprint, this cross-sectional study aimed at characterizing the PKR expression in non-diabetic human pancreases.

View Article and Find Full Text PDF

In many biochip applications, it is advantageous to be able to immobilize biomolecules at specific locations on the surface of solid supports. In this protocol, we describe a photochemical surface patterning procedure based on thiol-ene/yne photochemistry which allows for the simple and rapid selective patterning of biomolecules on thiol-ene solid supports. We describe the preparation of solid supports which are required for the immobilization, including porous monoliths, as well as two different immobilization schemes based on biotin-streptavidin interactions and covalent linkage via free amino groups respectively.

View Article and Find Full Text PDF

To improve the sample handling, and reduce cost and preparation time, of peptide mapping LC-MS workflows in protein analytical research, we here investigate the possibility of replacing conventional enzymatic digestion methods with a polymer microfluidic chip based enzyme reactor. Off-stoichiometric thiol-ene is utilized as both bulk material and as a monolithic stationary phase for immobilization of the proteolytic enzyme pepsin. The digestion efficiency of the, thiol-ene based, immobilized enzyme reactor (IMER) is compared to that of a conventional, agarose packed bed, pepsin IMER column commonly used in LC-MS based protein analyses.

View Article and Find Full Text PDF

The marriage of highly sensitive biosensor designs with the versatility in sample handling and fluidic manipulation offered by lab-on-a-chip systems promises to yield powerful tools for analytical and, in particular, diagnostic applications. The field where these two technologies meet is rapidly and almost violently developing. Yet, solutions where the full potentials are being exploited are still surprisingly rare.

View Article and Find Full Text PDF