Background: MECP2 Duplication Syndrome, also known as X-linked intellectual developmental disorder Lubs type (MRXSL; MIM: 300260), is a neurodevelopmental disorder caused by copy number gains spanning MECP2. Despite varying genomic rearrangement structures, including duplications and triplications, and a wide range of duplication sizes, no clear correlation exists between DNA rearrangement and clinical features. We had previously demonstrated that up to 38% of MRXSL families are characterized by complex genomic rearrangements (CGRs) of intermediate complexity (2 ≤ copy number variant breakpoints < 5), yet the impact of these genomic structures on regulation of gene expression and phenotypic manifestations have not been investigated.
View Article and Find Full Text PDFMutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene cause Rett syndrome, a severe childhood neurological disorder. MeCP2 is a well-established transcriptional repressor, yet upon its loss, hundreds of genes are dysregulated in both directions. To understand what drives such dysregulation, we deleted Mecp2 in adult mice, circumventing developmental contributions and secondary pathogenesis.
View Article and Find Full Text PDFGenomic copy-number variations (CNVs) that can cause neurodevelopmental disorders often encompass many genes, which complicates our understanding of how individual genes within a CNV contribute to pathology. MECP2 duplication syndrome (MDS or MRXSL in OMIM; OMIM#300260) is one such CNV disorder caused by duplications spanning methyl CpG-binding protein 2 (MECP2) and other genes on Xq28. Using an antisense oligonucleotide (ASO) to normalize MECP2 dosage is sufficient to rescue abnormal neurological phenotypes in mouse models overexpressing MECP2 alone, implicating the importance of increased MECP2 dosage within CNVs of Xq28.
View Article and Find Full Text PDFLoss- and gain-of-function of MeCP2 causes Rett syndrome (RTT) and duplication syndrome (MDS), respectively. MeCP2 binds methyl-cytosines to finely tune gene expression in the brain, but identifying genes robustly regulated by MeCP2 has been difficult. By integrating multiple transcriptomics datasets, we revealed that MeCP2 finely regulates growth differentiation factor 11 ().
View Article and Find Full Text PDFSpinocerebellar ataxia type 1 (SCA1) is a paradigmatic neurodegenerative disease in that it is caused by a mutation in a broadly expressed protein, ATXN1; however, only select populations of cells degenerate. The interaction of polyglutamine-expanded ATXN1 with the transcriptional repressor CIC drives cerebellar Purkinje cell pathogenesis; however, the importance of this interaction in other vulnerable cells remains unknown. Here, we mutated the 154Q knockin allele of Atxn1 mice to prevent the ATXN1-CIC interaction globally.
View Article and Find Full Text PDFMany intellectual disability disorders are due to copy number variations, and, to date, there have been no treatment options tested for this class of diseases. duplication syndrome (MDS) is one of the most common genomic rearrangements in males and results from duplications spanning the methyl-CpG binding protein 2 () gene locus. We previously showed that antisense oligonucleotide (ASO) therapy can reduce MeCP2 protein amount in an MDS mouse model and reverse its disease features.
View Article and Find Full Text PDFMethylated cytosine is an effector of epigenetic gene regulation. In the brain, Dnmt3a is the sole 'writer' of atypical non-CpG methylation (mCH), and MeCP2 is the only known 'reader' for mCH. We asked if MeCP2 is the sole reader for Dnmt3a dependent methylation by comparing mice lacking either protein in GABAergic inhibitory neurons.
View Article and Find Full Text PDF