Background Inclusion of mammographic breast density (BD) in breast cancer risk models improves accuracy, but accuracy remains modest. Interval cancer (IC) risk prediction may be improved by combining assessments of BD and an artificial intelligence (AI) cancer detection system. Purpose To evaluate the performance of a neural network (NN)-based model that combines the assessments of BD and an AI system in the prediction of risk of developing IC among women with negative screening mammography results.
View Article and Find Full Text PDFObjectives: Digital breast tomosynthesis (DBT) increases sensitivity of mammography and is increasingly implemented in breast cancer screening. However, the large volume of images increases the risk of reading errors and reading time. This study aims to investigate whether the accuracy of breast radiologists reading wide-angle DBT increases with the aid of an artificial intelligence (AI) support system.
View Article and Find Full Text PDFPurpose: To compare the performance of one-view digital breast tomosynthesis (1v-DBT) to that of three other protocols combining DBT and mammography (DM) for breast cancer detection.
Materials And Methods: Six radiologists, three experienced with 1v-DBT in screening, retrospectively reviewed 181 cases (76 malignant, 50 benign, 55 normal) in two sessions. First, they scored sequentially: 1v-DBT (medio-lateral oblique, MLO), 1v-DBT (MLO) + 1v-DM (cranio-caudal, CC) and two-view DM + DBT (2v-DM+2v-DBT).