There is a critical need for the establishment of an engineered model of the vocal fold epithelium that can be used to gain understanding of its role in vocal fold health, disease, and facilitate the development of new treatment options. Toward this goal, we isolated primary vocal fold epithelial cells (VFECs) from healthy porcine larynxes and used them within passage 3. Culture-expanded VFECs expressed the suprabasal epithelial marker cytokeratin 13 and intercellular junctional proteins occludin, E-cadherin, and zonula occludens-1.
View Article and Find Full Text PDFHuman mesenchymal stem cells (hMSCs) have been proposed as therapeutic cells for the treatment of vocal fold (VF) scarring. Although functional recovery was observed in animal models after stem cell injection, it is not clear how injected stem cells interact locally with the extracellular matrix (ECM) of the lamina propria (LP) and how such interactions affect stem cell behaviors to improve function. Herein, we developed an cell culture platform where hMSCs were encapsulated in a LP-mimetic matrix, derived from hyaluronic acid (HA), poly(ethylene glycol) (PEG) and collagen, and cultured dynamically in a custom-designed VF bioreactor.
View Article and Find Full Text PDFRegen Eng Transl Med
December 2019
Stem cell injection has been proposed as an alternative approach for the restoration of vocal fold (VF) function in patients with VF scarring. To assess the therapeutic efficacy of this treatment strategy, we evaluated the behaviors of human mesenchymal stem cells (hMSCs) in hydrogels derived from thiolated hyaluronic acid (HA-SH) and poly(ethylene glycol) diacrylate (PEG-DA) entrapping assembled collagen fibrils (abbreviated as HPC gels). Three hydrogel formulations with varying amounts of collagen (0, 1 and 2 mg/mL) but a fixed HA-SH (5 mg/mL) and PEG-DA (2 mg/mL) concentration, designated as HPC0, HPC1 and HPC2, were investigated.
View Article and Find Full Text PDFToward the goal of establishing physiologically relevant in vitro tumor models, we synthesized and characterized a biomimetic hydrogel using thiolated hyaluronic acid (HA-SH) and an acrylated copolymer carrying multiple copies of cell adhesive peptide (PolyRGD-AC). PolyRGD-AC was derived from a random copolymer of tert-butyl methacrylate (tBMA) and oligomeric (ethylene glycol) methacrylate (OEGMA), synthesized via atom transfer radical polymerization (ATRP). Acid hydrolysis of tert-butyl moieties revealed the carboxylates, through which acrylate groups were installed.
View Article and Find Full Text PDF