Publications by authors named "Alexander J Ruthenburg"

Article Synopsis
  • JADE is a key part of the HBO1 acetyltransferase complex, which plays a significant role in regulating gene transcription and developmental processes.
  • The PZP domain of JADE binds to histone H3 and DNA, facilitating the recruitment of the HBO1 complex to chromatin and influencing its enzymatic activity based on the methylation status of H3K4.
  • JADE’s involvement is linked to leukemogenesis, enhancing the activity of specific fusion proteins, indicating its critical role in both normal and pathological cellular functions.
View Article and Find Full Text PDF

Long-read RNA sequencing has arisen as a counterpart to short-read sequencing, with the potential to capture full-length isoforms, albeit at the cost of lower depth. Yet this potential is not fully realized due to inherent limitations of current long-read assembly methods and underdeveloped approaches to integrate short-read data. Here, we critically compare the existing methods and develop a new integrative approach to characterize a particularly challenging pool of low-abundance long noncoding RNA (lncRNA) transcripts from short- and long-read sequencing in two distinct cell lines.

View Article and Find Full Text PDF

In 2018, we used internally calibrated chromatin immunoprecipitation (ICeChIP) to find that many of the most commonly used antibodies against H3K4 methylforms had significant off-target binding, which compromised the findings of at least eight literature paradigms that used these antibodies for ChIP-seq (Shah et al., 2018). In many cases, we were able to recapitulate the prior findings in K562 cells with the original, low-quality antibody, only to find that the models did not hold up to scrutiny with highly specific reagents and quantitative calibration.

View Article and Find Full Text PDF

Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns.

View Article and Find Full Text PDF

MLL-rearranged leukemia depends on H3K79 methylation. Depletion of this transcriptionally activating mark by DOT1L deletion or high concentrations of the inhibitor pinometostat downregulates and , and consequently reduces leukemia survival. Yet, some MLL-rearranged leukemias are inexplicably susceptible to low-dose pinometostat, far below concentrations that downregulate this canonical proliferation pathway.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) has transformed molecular biology and contributed to many seminal insights into genomic regulation and function. Apart from whole-genome sequencing, an NGS workflow involves alignment of the sequencing reads to the genome of study, after which the resulting alignments can be used for downstream analyses. However, alignment is complicated by the repetitive sequences; many reads align to more than one genomic locus, with 15-30% of the genome not being uniquely mappable by short-read NGS.

View Article and Find Full Text PDF

Sperm contributes genetic and epigenetic information to the embryo to efficiently support development. However, the mechanism underlying such developmental competence remains elusive. Here, we investigated whether all sperm cells have a common epigenetic configuration that primes transcriptional program for embryonic development.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) localize in the cell nucleus and influence gene expression through a variety of molecular mechanisms. Chromatin-enriched RNAs (cheRNAs) are a unique class of lncRNAs that are tightly bound to chromatin and putatively function to locally cis-activate gene transcription. CheRNAs can be identified by biochemical fractionation of nuclear RNA followed by RNA sequencing, but until now, a rigorous analytic pipeline for nuclear RNA-seq has been lacking.

View Article and Find Full Text PDF

Chromatin immunoprecipitation coupled to next-generation sequencing (ChIP-seq) has served as the central method for the study of histone modifications for the past decade. In ChIP-seq analyses, antibodies selectively capture nucleosomes bearing a modification of interest and the associated DNA is then mapped to the genome to determine the distribution of the mark. This approach has several important drawbacks: (i) ChIP interpretation necessitates the assumption of perfect antibody specificity, despite growing evidence that this is often not the case.

View Article and Find Full Text PDF

By examination of the cancer genomics database, we identified a new set of mutations in core histones that frequently recur in cancer patient samples and are predicted to disrupt nucleosome stability. In support of this idea, we characterized a glutamate to lysine mutation of histone H2B at amino acid 76 (H2B-E76K), found particularly in bladder and head and neck cancers, that disrupts the interaction between H2B and H4. Although H2B-E76K forms dimers with H2A, it does not form stable histone octamers with H3 and H4 and when reconstituted with DNA forms unstable nucleosomes with increased sensitivity to nuclease.

View Article and Find Full Text PDF

Histone post-translational modifications (PTMs) are important genomic regulators often studied by chromatin immunoprecipitation (ChIP), whereby their locations and relative abundance are inferred by antibody capture of nucleosomes and associated DNA. However, the specificity of antibodies within these experiments has not been systematically studied. Here, we use histone peptide arrays and internally calibrated ChIP (ICeChIP) to characterize 52 commercial antibodies purported to distinguish the H3K4 methylforms (me1, me2, and me3, with each ascribed distinct biological functions).

View Article and Find Full Text PDF

Expression of vast repertoires of antigen receptors by lymphocytes, with each cell expressing a single receptor, requires stochastic activation of individual variable (V) genes for transcription and recombination. How this occurs remains unknown. Using single-cell RNA sequencing (scRNA-seq) and allelic variation, we show that individual pre-B cells monoallelically transcribe divergent arrays of Vκ genes, thereby opening stochastic repertoires for subsequent Vκ-Jκ recombination.

View Article and Find Full Text PDF

Deep sequencing has revealed that epigenetic modifiers are the most mutated genes in acute myeloid leukemia (AML). Thus, elucidating epigenetic dysregulation in AML is crucial to understand disease mechanisms. Here, we demonstrate that metal response element binding transcription factor 2/polycomblike 2 (MTF2/PCL2) plays a fundamental role in the polycomb repressive complex 2 (PRC2) and that its loss elicits an altered epigenetic state underlying refractory AML.

View Article and Find Full Text PDF

Rapidly determining the biological effect of perturbing a site within a potential drug target could guide drug discovery efforts, but it remains challenging. Here, we describe a facile target validation approach that exploits monobodies, small synthetic binding proteins that can be fully functionally expressed in cells. We developed a potent and selective monobody to WDR5, a core component of the mixed lineage leukemia (MLL) methyltransferase complex.

View Article and Find Full Text PDF

The noncoding genome is pervasively transcribed. Noncoding RNAs (ncRNAs) generated from enhancers have been proposed as a general facet of enhancer function and some have been shown to be required for enhancer activity. Here we examine the transcription-factor-(TF)-dependence of ncRNA expression to define enhancers and enhancer-associated ncRNAs that are involved in a TF-dependent regulatory network.

View Article and Find Full Text PDF

Methyllysine analogues (MLAs), furnished by aminoethylation of engineered cysteine residues, are widely used surrogates of histone methyllysine and are considered to be effective proxies for studying these epigenetic marks in vitro. Here we report the first structure of a trimethyllysine MLA histone in complex with a protein binding partner, quantify the thermodynamic distinctions between MLAs and their native methyllysine counterparts, and demonstrate that these differences can compromise qualitative interpretations of binding at the nucleosome level. Quantitative measurements with two methyllysine binding protein modules reveal substantial affinity losses for the MLA peptides versus the corresponding native methyllysine species in both cases, although the thermodynamic underpinnings are distinct.

View Article and Find Full Text PDF

We recently described a new class of long noncoding RNAs (lncRNAs) that are distinguished by especially tight chromatin association and whose presence is strongly correlated to expression of nearby genes. Here, we examine the cis-enhancer mechanism of this class of chromatin-enriched RNA (cheRNA) across multiple human cell lines. cheRNAs are largely cell type specific and provide the most reliable chromatin signature to predict cis-gene transcription in every human cell type examined.

View Article and Find Full Text PDF

Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition.

View Article and Find Full Text PDF

A number of long noncoding RNAs (lncRNAs) have been reported to regulate transcription via recruitment of chromatin modifiers or bridging distal enhancer elements to gene promoters. However, the generality of these modes of regulation and the mechanisms of chromatin attachment for thousands of unstudied human lncRNAs remain unclear. To address these questions, we performed stringent nuclear fractionation coupled to RNA sequencing.

View Article and Find Full Text PDF

Access to high-quality antibodies is a necessity for the study of histones and their posttranslational modifications (PTMs). Here we debut the Histone Antibody Specificity Database (http://www.histoneantibodies.

View Article and Find Full Text PDF

Chromatin immunoprecipitation (ChIP) serves as a central experimental technique in epigenetics research, yet there are serious drawbacks: it is a relative measurement, which untethered to any external scale obscures fair comparison among experiments; it employs antibody reagents that have differing affinities and specificities for target epitopes that vary in abundance; and it is frequently not reproducible. To address these problems, we developed Internal Standard Calibrated ChIP (ICeChIP), wherein a native chromatin sample is spiked with nucleosomes reconstituted from recombinant and semisynthetic histones on barcoded DNA prior to immunoprecipitation. ICeChIP measures local histone modification densities on a biologically meaningful scale, enabling unbiased trans-experimental comparisons, and reveals unique insight into the nature of bivalent domains.

View Article and Find Full Text PDF

Considerable mechanistic insight into the function of histone post-translational modifications and the enzymes that install and remove them derives from in vitro experiments with modified histones, often embedded in nucleosomes. We report the first semisyntheses of native-like histone 3 (H3) bearing tri- and dimethyllysines at position 79 and trimethyllysine at position 36, as well as more facile and traceless semisyntheses of K9 and K27 trimethylated species. These semisyntheses are practical on a multi-milligram scale and can also generate H3 with combinations of marks.

View Article and Find Full Text PDF

Variability in the quality of antibodies to histone post-translational modifications (PTMs) is a widely recognized hindrance in epigenetics research. Here, we produced recombinant antibodies to the trimethylated lysine residues of histone H3 with high specificity and affinity and no lot-to-lot variation. These recombinant antibodies performed well in common epigenetics applications, and enabled us to identify positive and negative correlations among histone PTMs.

View Article and Find Full Text PDF

In this issue of Molecular Cell, Wu et al. (2011) reveal that ubiquitylation of histone 2B lysine 34 stimulates histone methyltransferase activity on nucleosomes, a finding with implications for the general mechanism by which monoubiquitylation may influence subsequent modification activities.

View Article and Find Full Text PDF