IEEE Trans Biomed Eng
October 2019
Objective: To develop a novel radio-frequency (RF) concept for ultra-high field (UHF) human magnetic resonance imaging (MRI) based on a coaxial resonant cavity.
Methods: A two-channel slotted coaxial cavity RF applicator was designed for human head MRI at 9.4T.
Objectives: We studied the feasibility of high-resolution T-weighted cervical cancer imaging on an ultra-high-field 7.0-T magnetic resonance imaging (MRI) system using an endorectal antenna of 4.7-mm thickness.
View Article and Find Full Text PDFThe progression to 7 Tesla (7 T) magnetic resonance imaging (MRI) yields promises of substantial increase in signal-to-noise (SNR) ratio. This increase can be traded off to increase image spatial resolution or to decrease acquisition time. However, renal 7 T MRI remains challenging due to inhomogeneity of the radiofrequency field and due to specific absorption rate (SAR) constraints.
View Article and Find Full Text PDFPurpose: To develop a 16-channel transceive body imaging array at 7.0 T with improved transmit, receive, and specific absorption rate (SAR) performance by combining both loop and dipole elements and using their respective and complementary near and far field characteristics.
Methods: A 16-channel radiofrequency (RF) coil array consisting of eight loop-dipole blocks (16LD) was designed and constructed.
It is revealed that the unique properties of ultrathin metasurface resonators can improve magnetic resonance imaging dramatically. A metasurface formed when an array of metallic wires is placed inside a scanner under the studied object and a substantial enhancement of the radio-frequency magnetic field is achieved by means of subwavelength manipulation with the metasurface, also allowing improved image resolution.
View Article and Find Full Text PDFPurpose: The design of RF coils for MRI transmit becomes increasingly challenging at high frequencies required for MRI at 7T and above. Our goal is to show a proof of principle of a new type of transmit coil for higher field strengths.
Method: We demonstrate an alternative transmit coil design based on dielectric waveguide principles which transfers energy via evanescent wave coupling.
Capecitabine (Cap) is an often prescribed chemotherapeutic agent, successfully used to cure some patients from cancer or reduce tumor burden for palliative care. However, the efficacy of the drug is limited, it is not known in advance who will respond to the drug and it can come with severe toxicity. (19)F Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Spectroscopic Imaging (MRSI) have been used to non-invasively study Cap metabolism in vivo to find a marker for personalized treatment.
View Article and Find Full Text PDFPurpose: Dipole antennas in ultrahigh field MRI have demonstrated advantages over more conventional designs. In this study, the fractionated dipole antenna is presented: a dipole where the legs are split into segments that are interconnected by capacitors or inductors.
Methods: A parameter study has been performed on dipole antenna length using numerical simulations.
Purpose: MR safety at 7 Tesla relies on accurate numerical simulations of transmit electromagnetic fields to fully assess local specific absorption rate (SAR) safety. Numerical simulations for SAR safety are currently performed using models of healthy patients. These simulations might not be useful for estimating SAR in patients who have large lesions with potentially abnormal dielectric properties, e.
View Article and Find Full Text PDFPurpose: High-resolution MRI combined with phospholipid detection may improve breast cancer grading. Currently, configurations are optimized for either high-resolution imaging or (31) P spectroscopy. To be able to perform both imaging as well as spectroscopy in a single session, we integrated a (1) H receiver array into a (1) H-(31) P transceiver at 7T.
View Article and Find Full Text PDFPurpose: Neoadjuvant treatment response in lymph nodes predicts patient outcome, but existing methods do not track response during therapy accurately. In this study, specialized hardware was used to adapt high-field (7T) (31) P magnetic resonance spectroscopy (MRS), which has been shown to track treatment response in small breast tumors, to monitor axillary lymph nodes.
Method: A dual-tuned quadrature coil that is a (31) P (120 MHz) transceiver and a (1) H (300 MHz) receiver was designed using a novel detune circuit.
Purpose: A new method, called Transmit and Receive Patterns from Low-Tip-angle gradient-Echo Images (TRIPLET), is described which simultaneously maps the B1+ and B1- fields of a transmit/receive radiofrequency coil array. The input data are low-tip-angle gradient-echo images, which can be acquired in a relatively short scanning time.
Theory And Methods: For each voxel in the field of view, a matrix can be assembled with the low-tip-angle gradient-echo image values of the radiofrequency coil array.
Purpose: Surface transmit arrays used in ultra-high field body MRI require local specific absorption rate (SAR) assessment. As local SAR cannot be measured directly, local SAR is determined by simulations using dielectric patient models. In this study, the inter-patient local SAR variation is investigated for 7T prostate imaging with the single-side adapted dipole antenna array.
View Article and Find Full Text PDFPatient-specific radiofrequency shimming in high-field MRI strengthens the need for online, patient-specific specific absorption rate (SAR) monitoring. Numerical simulation is currently most effective for this purpose but may require a patient-specific dielectric model. To investigate whether a generic model may be combined with a safety factor to account for variation within the population, generic SAR behavior is studied for 7T MRI of the head.
View Article and Find Full Text PDFAn endorectal coil and an eight-element microstrip array were compared for prostate imaging at 7 T. An extensive radiofrequency safety assessment was performed with the use of finite difference time domain simulations to determine safe scan parameters. These simulations showed that the endorectal coil can deliver substantially more B(1)(+) to the prostate than can the microstrip array within the specific absorption rate safety guidelines.
View Article and Find Full Text PDFPurpose/objectives: In radiotherapy the healthy tissue involvement still poses serious dose limitations. This results in sub-optimal tumour dose and complications. Daily image guided radiotherapy (IGRT) is the key development in radiation oncology to solve this problem.
View Article and Find Full Text PDF