Publications by authors named "Alexander J Porkovich"

Interactions between oxide supports and noble metal nanoparticles (NPs) is an area of intense research interest across all fields of catalysis. Oxygen spillover, metal support interactions (MSIs) and charge transfer are among many mechanisms observed and proposed as to how NP-support interfaces assist and enhance catalysis. This work studies the migration of oxygen across the Pd NP-CuO nanowire (NW) interface and beyond.

View Article and Find Full Text PDF

Electronic metal-support interactions (EMSIs) comprise an area of intense study, the manipulation of which is of paramount importance in the improvement of heterogeneous metal nanoparticle (NP) supported catalysts. EMSI is the transfer of charge from the support to NP, enabling more effective adsorption and interaction of reactants during catalysis. Ru NPs on CuO supports show different levels of EMSI (via charge transfer) depending on their crystal structure, with multiple twinned NPs showing greater potential for EMSI.

View Article and Find Full Text PDF

Tuning the metal support interaction (MSI) in heterogeneous catalysts is of utmost importance for various applications in different catalysis reactions. Pt-TiN systems are strong contenders for commercial catalysts, although the charge screening of Pt and non-involvement of N reduces their effective MSI and limits it to the Pt-Ti interface. Here, the bias driven landing of gas phase synthesized Pt nanoparticles (NPs) is used to change the nature of the MSI and enhance the charge transfer phenomenon.

View Article and Find Full Text PDF

Field-effect transistor (FET) biosensors based on low-dimensional materials are capable of highly sensitive and specific label-free detection of various analytes. In this work, a FET biosensor based on graphene decorated with gold nanoparticles (Au NPs) was fabricated for lactose detection in a liquid-gate measurement configuration. This graphene device is functionalized with a carbohydrate recognition domain (CRD) of the human galectin-3 (hGal-3) protein to detect the presence of lactose from the donor effect of lectin - glycan affinity binding on the graphene.

View Article and Find Full Text PDF