Publications by authors named "Alexander J Peltekoff"

The widespread realization of wearable electronics requires printable active materials capable of operating at low voltages. Polymerized ionic liquid (PIL) block copolymers exhibit a thickness-independent double-layer capacitance that makes them a promising gating medium for the development of organic thin-film transistors (OTFTs) with low operating voltages and high switching speed. PIL block copolymer structure and self-assembly can influence ion conductivity and the resulting OTFT performance.

View Article and Find Full Text PDF

Polymerized ionic liquids (PILs) are a potential solution to the large-scale production of low-power consuming organic thin-film transistors (OTFTs). When used as the device gating medium in OTFTs, PILs experience a double-layer capacitance that enables thickness independent, low-voltage operation. PIL microstructure, polymer composition, and choice of anion have all been reported to have an effect on device performance, but a better structure property relationship is still required.

View Article and Find Full Text PDF

A library of statistically random pentafluorostyrene (PFS) and methyl methacrylate (MMA) copolymers with narrow molecular weight distributions was produced, using nitroxide mediated polymerization (NMP) to study the effect of polymer composition on the performance of bottom-gate top-contact organic thin-film transistors, when utilized as the dielectric medium. Contact angle measurements confirmed the ability to tune the surface properties of copolymer thin films through variation of its PFS/MMA composition, while impedance spectroscopy determined the effect of this variation on dielectric properties. Bottom-gate, top-contact copper phthalocyanine (CuPc) based organic thin-film transistors were fabricated using the random copolymers as a dielectric layer.

View Article and Find Full Text PDF