Publications by authors named "Alexander J Donovan"

The intrinsic overexpression of secretory phospholipase A2 (sPLA2) in various pro-inflammatory diseases and cancers has the potential to be exploited as a therapeutic strategy for diagnostics and treatment. To explore this potential and advance our knowledge of the role of sPLA2 in related diseases, it is necessary to systematically investigate the molecular interaction of the enzyme with lipids. By employing a Langmuir trough integrated with X-ray reflectivity and grazing incidence X-ray diffraction techniques, this study examined the molecular packing structure of 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) films before and after enzyme adsorption and enzyme-catalyzed degradation.

View Article and Find Full Text PDF

A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core-shell micelles composed of linear diblock copolymers poly(ethylene glycol)--poly(caprolactone) (PEG--PCL), poly(ethylene oxide)--poly(lactic acid) (PEG--PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA--PEG/PLA) were characterized by dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core-shell size, and aggregation number.

View Article and Find Full Text PDF
Article Synopsis
  • Short-chain polyphosphate (polyP) is released from activated platelets, but its role in thrombosis is unclear.
  • Numerical simulations and in vitro tests showed that localized synthetic polyP significantly speeds up clotting in flowing blood, especially at low shear rates typical of thrombotic conditions.
  • While localized polyP can accelerate clotting at very low concentrations, the biological reasons for its localization on platelet or vascular surfaces are still unknown.
View Article and Find Full Text PDF

Granular platelet-sized polyphosphate nanoparticles (polyP NPs) were encapsulated in sterically stabilized liposomes, forming a potential, targeted procoagulant nanotherapy resembling human platelet dense granules in both structure and functionality. Dynamic light scattering (DLS) measurements reveal that artificial dense granules (ADGs) are colloidally stable and that the granular polyP NPs are encapsulated at high efficiencies. High-resolution scanning transmission electron microscopy (HR-STEM) indicates that the ADGs are monodisperse particles with a 150 nm diameter dense core consisting of P, Ca, and O surrounded by a corrugated 25 nm thick shell containing P, C, and O.

View Article and Find Full Text PDF

Platelet-sized polyphosphate (polyP) was functionalized on the surface of gold nanoparticles (GNPs) via a facile conjugation scheme entailing EDAC (N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride)-catalyzed phosphoramidation of the terminal phosphate of polyP to cystamine. Subsequent reduction of the disulfide moiety allowed for anchoring to the colloidal surface. The ability of the synthesized polyP-GNPs to initiate the contact pathway of clotting in human pooled normal plasma (PNP) was then assayed by quantifying changes in viscous, mechanical, and optical properties upon coagulation.

View Article and Find Full Text PDF

Size-controlled granular polyphosphate (PolyP) nanoparticles were synthesized by precipitation in aqueous solutions containing physiological concentrations of calcium and magnesium. We demonstrate using dynamic light scattering (DLS) that the solubility is correlated inversely with PolyP chain length, with very long chain PolyP (PolyP1000+, more than 1000 repeating units) normally found in prokaryotes precipitating much more robustly than shorter chains like those found in human platelet dense granules (PolyP80, range 76-84 repeating units). It is believed that the precipitation of PolyP is a reversible process involving calcium coordination to phosphate monomers in the polymer chain.

View Article and Find Full Text PDF

Mutations that inhibit Kv11.1 ion channel activity contribute to abnormalities of cardiac repolarization that can lead to long QT2 (LQT2) cardiac arrhythmias and sudden death. However, for most of these mutations, nothing is known about the molecular mechanism linking Kv11.

View Article and Find Full Text PDF