Sugar oxidase can oxidize a carbohydrate substrate into an acid, but there have been no reports on the successful enzymatic conversion of glycopolymers containing carbohydrate pendants. We introduced a poly(ethylene glycol) (PEG) spacer between the carbohydrate and the methacrylic units, and glucose oxidase (GOx) showed enzymatic activity when the PEG spacer is sufficiently long, converting the galactose pendant into galactonic acid and yielding a copolymer. The glycopolymers with a PEG spacer showed stronger binding to the sugar-specific lectin than those without the spacer, while the binding was gradually weakened as the sugar pendants were converted to acid groups.
View Article and Find Full Text PDFGene therapy is a promising tool for the treatment of various cancers but is hindered by the physico-chemical properties of siRNA and needs a suitable vector for the delivery of siRNA to the target tissue. Bile acid-based block copolymers offers certain advantages for the loading and delivery of siRNA since they can efficiently complex siRNA and bile acids are biocompatible endogenous molecules. In this study, we demonstrate the use of lipids as co-surfactants for the preparation of mixed micelles to improve the siRNA delivery of cholic acid-based block copolymers.
View Article and Find Full Text PDFUltra-small cuprous oxide (<10 nm) was deposited on the exterior face of alpha-zirconium phosphate (ɑ-ZrP). These nanoparticles have been successfully synthesized using ethylene diamine tetra acetic acid (EDTA) and ɑ-ZrP sheets as a chelating agent and template, respectively. In this article, nanosized cuprous oxide (CuO) loaded on the exterior face of ɑ-ZrP (CuO@ZrP) was prepared via a simple and convenient method.
View Article and Find Full Text PDFDoxorubicin (Dox) is a drug of choice in the design of drug delivery systems directed toward breast cancers, but is often limited by loading and control over its release from polymer micelles. Bile acid-based block copolymers present certain advantages over traditional polymer-based systems for drug delivery purposes, since they can enable a higher drug loading via the formation of a reservoir through their aggregation process. In this study, hydrophobic and electrostatic interactions are compared for their influence on Dox loading inside cholic acid based block copolymers.
View Article and Find Full Text PDF