In conjugated polymers, solution-phase structure and aggregation exert a strong influence on device morphology and performance, making understanding solubility crucial for rational design. Using atomistic molecular dynamics (MD) and free-energy sampling algorithms, we examine the aggregation and solubility of the polymer PTB7, studying how side-chain structure can be modified to control aggregation. We demonstrate that free-energy sampling can be used to effectively screen polymer solubility in a variety of solvents but that solubility parameters derived from MD are not predictive.
View Article and Find Full Text PDFA new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones interaction potential.
View Article and Find Full Text PDFHeterogeneous nucleation refers to the propensity for phase transformations to initiate preferentially on foreign surfaces, such as vessel walls, dust particles, or formulation additives. In crystallization, the form of the initial nucleus has ramifications for the crystallographic form, morphology, and properties of the resulting solid. Nevertheless, the discovery and design of nucleating agents remains a matter of trial and error because of the very small spatiotemporal scales over which the critical nucleus is formed and the extreme difficulty of examining such events empirically.
View Article and Find Full Text PDF