Publications by authors named "Alexander J Armstrong"

The self-assembly and surface adsorption of glycerol monooleate (GMO) in -dodecane are studied using a combination of experimental and molecular dynamics simulation techniques. The self-assembly of GMO to form reverse micelles, with and without added water, is studied using small-angle neutron scattering and simulations. A large-scale simulation is also used to investigate the self-assembly kinetics.

View Article and Find Full Text PDF

As a result of the availability of modern software and hardware, Bayesian analysis is becoming more popular in neutron and X-ray reflectometry analysis. The understandability and replicability of these analyses may be harmed by inconsistencies in how the probability distributions central to Bayesian methods are represented in the literature. Herein advice is provided on how to report the results of Bayesian analysis as applied to neutron and X-ray reflectometry.

View Article and Find Full Text PDF

The adsorption behavior of β-nicotinamide adenine dinucleotide (NADH) at the carbon/electrolyte interface has been studied using a combination of neutron reflectometry (NR) and solution depletion isotherms. Coupling the NR technique with an electrochemical cell allowed observation of the reversible adsorption and desorption of the molecule at the electrode surface over a range of applied potentials. The overall surface coverage was low (30-50%), suggesting adsorption only at specific defect sites on the surface.

View Article and Find Full Text PDF

The spontaneous adsorption of graphene oxide (GO) sheets at the air-water interface is explored using X-ray reflectivity (XRR) measurements. As a pure aqueous dispersion, GO sheets do not spontaneously adsorb at the air-water interface due to their high negative surface potential (-60 mV) and hydrophilic functionality. However, when incorporated with surfactant molecules at optimal ratios and loadings, GO sheets can spontaneously be driven to the surface.

View Article and Find Full Text PDF

A novel neutron and X-ray reflectometry sample environment is presented for the study of surface-active molecules at solid-liquid interfaces under shear. Neutron reflectometry was successfully used to characterise the iron oxide-dodecane interface at a shear rate of [Formula: see text] [Formula: see text] using a combination of conventional reflectometry theory coupled with the summation of reflected intensities to describe reflectivity from thicker films. Additionally, the structure adopted by glycerol monooleate (GMO), an Organic Friction Modifier, when adsorbed at the iron oxide-dodecane interface at a shear rate of [Formula: see text] [Formula: see text] was studied.

View Article and Find Full Text PDF

Spontaneous formation of vesicles from the self-assembly of two specific surfactants, one zwitterionic (oleyl amidopropyl betaine, OAPB) and the other anionic (Aerosol-OT, AOT), is explored in water using small-angle scattering techniques. Two factors were found to be critical in the formation of vesicles: surfactant ratio, as AOT concentrations less than equimolar with OAPB result in cylindrical micelles or mixtures of micellar structures, and salt concentration, whereby increasing the amount of NaCl promotes vesicle formation by reducing headgroup repulsions. Small-angle neutron scattering measurements reveal that the vesicles are approximately 30-40 nm in diameter, depending on sample composition.

View Article and Find Full Text PDF