Publications by authors named "Alexander I Zinin"

Stereocontrolled 1,2-trans-α-arabinofuranosylation using polysilylated mono- and disaccharide glycosyl donors was investigated. A complete α-stereoselectivity of 1,2-trans-arabinofuranosylation was found for Ara-β-(1 → 2)-Ara disaccharide glycosyl donors containing five triisopropylsilyl (TIPS) groups with arylthiol (1) (as shown in our previous publications) or N-phenyltrifluoroacetimidoyl (2) (this work) leaving groups. Conversely, in case of monosaccharide thioglycosides polysilylated with acyclic silyl groups (TIPS, TBDPS), stereoselectivity of glycosylation was lower (α:β = 7-8:1), although the desired α-isomer still dominated.

View Article and Find Full Text PDF

Herein, we report a mild and general protocol for chemoselective deacetylation of mixed acetyl- and benzoyl-protected carbohydrates under mild acidic conditions. The protocol allows quick access to partially protected carbohydrates, which serve as versatile synthetic intermediates during the total synthesis of various mono- and oligosaccharide targets. The applicability of the developed protocol was successfully demonstrated on a range of carbohydrate substrates of various configurations and substitution patterns featuring functionalized aliphatic and aromatic aglycones.

View Article and Find Full Text PDF

We discovered an unusual triflic acid-promoted oligomerization of arabinofuranosides during glycosylation of the primary hydroxy group of α-(1 → 5)-linked tetraarabinofuranoside bearing 4-(2-chloroethoxy)phenyl aglycone with α-(1 → 5), β-(1 → 2)-linked tetraarabinofuranoside containing N-phenyltrifluoroacetimidoyl leaving group, which led to octa-, dodeca- and hexadecaarabinofuranosides. The possible mechanism of triflic acid-promoted oligomerization was proposed. The choice of promoter was found to be a critical factor for the discovered oligomerization of arabinofuranosides.

View Article and Find Full Text PDF

Glycosyl halides are historically one of the first glycosyl donors used in glycosylation reactions, and interest in glycosylation reactions involving this class of glycosyl donors is currently increasing. New methods for their activation have been proposed and effective syntheses of oligosaccharides with their participation have been developed. At the same time, the possibilities of using these approaches to the synthesis of sialosides are restricted by the limited diversity of known sialyl halides (previously, mainly sialyl chlorides, less often sialyl bromides and sialyl fluorides, with acetyl (Ac) groups at the oxygen atoms and AcNH, AcN and N groups at C-5 were used).

View Article and Find Full Text PDF

A synthesis of 2-(2,2,2-trichloroethoxy)-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-galactopyrano)-[2,1-d]-2-oxazoline - a previously unknown 2-alkoxy glyco-[2,1-d]-2-oxazoline derivative with d-galacto configuration was carried out. Glycosylating activity of the obtained galactooxazoline has been studied and it has been shown that in the presence of a weak protic acid, such as sym-collidinium triflate, this substance exhibits properties of a reactive and 1,2-trans-stereoselective glycosyl donor. The homopolymerization reaction of oxazoline derivatives of sugars has been found to proceed under the same conditions, leading to the formation of pseudo-oligosaccharide products.

View Article and Find Full Text PDF

Base-promoted (MeONa in MeOH or imidazole in DMF) isomerization of a series of 3,4,6-tri-O-benzyl-d-gluco- and d-mannopyranose derivatives with triisopropylsilyl (TIPS) substituents was studied. The presence of a bulky TIPS group at O-1 or O-2 was shown to be favorable for the isomerization of benzyl protected d-gluco- and d-mannopyranose derivatives to d-fructofuranose derivatives, in which the bulky silyl group occupies less sterically hindered primary position. The highest yield (33%) of the fructofuranose derivative was achieved when 3,4,6-tri-O-benzyl-2-O-triisopropylsilyl-d-mannopyranose was treated with MeONa in MeON at 50 °C.

View Article and Find Full Text PDF

New methods for the synthesis of the title oxazoline 2 from the corresponding 2-deoxy-2-(2,2,2- trichloroethoxycarbonylamino)glucosyl bromide were developed. The target 2-(2,2,2-trichloroethoxy) gluco-[2,1-d]-2-oxazoline 2 can be synthesized under conditions of halide ion catalysis, using triethylamine as a base. The synthesized 2-(2,2,2-trichloroethoxy)-2-oxazoline glycosyl donor was used for stereo-, regio-, and chemoselective glycosylation reactions under extremely mild conditions.

View Article and Find Full Text PDF

The formation of macrocyclic pseudo-tetrasaccharide derivative of d-glucosamine as a result of the acid-catalyzed reaction between 2-methyl- and 2-(2,2,2-trichloroethoxy)-substituted oxazoline derivatives of sugars was discovered. The structure of the obtained product was determined using NMR spectroscopy and mass spectrometry. An explanation of the obtained results based on the mechanism of the reaction of electrophilic polymerization of 2-substituted glyco-[2,1-d]-2-oxazolines and the principle of hard and soft acids and bases (HSAB) was proposed.

View Article and Find Full Text PDF

Highly regioselective acetylation of primary hydroxy groups in thioglycoside derivatives with - and -configurations was achieved by treatment with aqueous or anhydrous acetic acid (60-100% AcOH) at elevated temperatures (80-118 °C), avoiding complex, costly and time-consuming manipulations with protective groups. Acetylation of both 4,6--benzylidene acetals and the corresponding diols as well as the unprotected tetraol with AcOH was shown to lead selectively to formation of 6--acetyl derivatives. For example, the treatment of phenyl 1-thio-β-d-glucopyranoside with anhydrous AcOH at 80 °C for 24 h gave the corresponding 6--acetylated derivative in 47% yield (71% based on the reacted starting material) and unreacted starting tetraol in 34% yield, which can easily be recovered by silica gel chromatography and reused in further acetylation.

View Article and Find Full Text PDF
Article Synopsis
  • This study outlines efficient methods for synthesizing per-O-acyl derivatives of 4-(3-chloropropoxy)phenyl (CPP) glycosides from common sugars like d-glucose and lactose.
  • The resulting CPP glycosides are then easily converted into unprotected 4-(3-azidopropoxy)phenyl (APP) glycosides with nearly complete yield.
  • These APP glycosides have the potential to be next-generation Janus glycosides, featuring a cleavable spacer that allows for further modifications or conjugation.
View Article and Find Full Text PDF

A new glycosyl acceptor to be used in sialylation was designed as a 3-hydroxy derivative of 4-methoxyphenyl β-d-galactopyranoside with 2-O-acetyl group and O-4 and O-6 protected as benzylidene acetal. Two alternative syntheses of this compound were compared. Sialylation of 3-OH group of the glycosyl acceptor with O-chloroacetylated N-trifluoroacetylneuraminic acid phenyl thioglycoside (NIS, TfOH, MeCN, MS 3 Å, -40 °C) was studied in a wide concentration range (5-150 mmol L).

View Article and Find Full Text PDF

A pyranose ring contraction of ethyl 1-thio-β-d-galactopyranosides has been discovered that proceeds with retention of aglycon under mildly acidic conditions (aq TFA in CHCl). Key factors for success of this rearrangement are the presence of bulky silyl (TIPS or TBDPS) substituents at both O-2 and O-3 and a free hydroxy group at C-4 (derivatives with acid-labile protective groups at O-4 will also engage in this reaction). The rearrangement cleanly proceeds for 2,3-di- O-TIPS derivatives with two hydroxy groups at C-4 and C-6, acid-labile TES groups at O-4 and O-6, or one acyl substituent (Bz, ClAc) at O-6.

View Article and Find Full Text PDF

Both protective and pre-spacer features of 4-(2-chloroethoxy)phenyl (CEP) aglycon, which belong to the class of Janus aglycons, were engaged in a benzyl-free synthesis of oligosaccharide fragments of polysaccharides from rhizobacterium Azospirillum brasilense sp7. Introduction of α-1,4-linked L-fucose residue was performed using 3,4-di-O-benzoyl-2-O-triisopropylsilyl-α-L-fucopyranosyl N-phenyltrifluoroacetimidate in excellent stereoselectivity and high yields. The obtained deprotected di-, tri- and tetrasaccharides contain 4-(2-azidoethoxy)phenyl (AEP) spacer aglycon, which allows straightforward preparation of neoglycoconjugates that will be used for the study of the role of lipopolysaccharide of rhizobacterium A.

View Article and Find Full Text PDF

A series of novel sialyl donors containing O-trifluoroacetyl (TFA) groups at various positions was synthesized. The choice of protecting groups in sialyl donors was based on hypothesis that variations in ability of different acyl groups to act as hydrogen bond acceptors would influence the supramolecular structure of reaction mixture (solution structure), hence the outcome of sialylation. These glycosyl donors were examined in the model glycosylation of the primary hydroxyl group of 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose in comparison with sialyl donors without O-TFA groups.

View Article and Find Full Text PDF

Under gradual acidification of growth medium resulting in the formation of dormant , a significant accumulation of free trehalose in dormant cells was observed. According to H- and C-NMR spectroscopy up to 64% of total organic substances in the dormant cell extract was represented by trehalose whilst the trehalose content in an extract of active cells taken from early stationary phase was not more than 15%. Trehalose biosynthesis during transition to the dormant state is provided by activation of genes involved in the OtsA-OtsB and TreY-TreZ pathways (according to RT-PCR).

View Article and Find Full Text PDF

Rapid and simple synthesis of oligosaccharides related to one of the terminal motifs of mycobacterial lipoarabinomannan is described. An array of homologous linear α(1 → 5)-linked oligoarabinofuranosides with 4-(2-chloroethoxy)phenyl aglycon and selectively unprotected 5-OH group at the non-reducing end was obtained by oligomerization of 3-O-benzoyl β-D-arabinofuranose 1,2,5-orthobenzoate. Subsequent introduction of β(1 → 2)-linked arabinofuranose disaccharide moiety by step-wise glycosylation furnished the target oligosaccharides which were conjugated with bovine serum albumin.

View Article and Find Full Text PDF

The influence of O-trifluoroacetyl (TFA) groups at different positions of thioglycoside glycosyl donors on stereoselectivity of α-arabinofuranosylation leading to corresponding disaccharides was studied. It was shown that TFA group in thioglycoside glycosyl donors, when combined with 2-O-(triisopropylsilyl) (TIPS) non-participating group, may be regarded as an electron-withdrawing protecting group that may enhance 1,2-cis-selectivity in arabinofuranosylation, the results strongly depending on the nature of glycosyl acceptor. The reactivities of the glycosyl donors were compared with those of a similar thioglycoside with O-pentafluoropropionyl groups and the known phenyl 3,5-O-(di-tert-butylsilylene)-1-thio-α-d-arabinofuranosides with 2-O-TIPS and 2-O-benzyl groups.

View Article and Find Full Text PDF

Optical rotation of aqueous solutions of D-levoglucosan was studied experimentally in the 0.03-4.0 mol L(-1) concentration range and a nonlinear concentration dependence of specific optical rotation (SR) was revealed.

View Article and Find Full Text PDF

The synthesis of the title compounds using intramolecular nucleophilic substitution reactions in the molecules of the corresponding 2-alkoxycarbonylamino-2-deoxy glucosyl halides was studied. It was found that in contrast to the 2-alkyl (aryl) glyco-[2,1-d]-2-oxazolines, the synthesis of the target 2-alkoxy glyco-[2,1-d]-2-oxazolines was possible only in highly basic media. The synthesized 2-alkoxy oxazoline derivatives turned out to be active glycosyl donors and were used for stereoselective 1,2-trans glycosylation reactions catalyzed by weak protic acid under very mild conditions, thus preventing anomerization and other side reactions.

View Article and Find Full Text PDF

β-d-Arabinofuranose 1,2,5-orthobenzoates with 3-O-acetyl, 3-O-benzoyl, and 3-O-chloroacetyl groups were prepared in an efficient manner starting from readily available crystalline methyl 2,3,5-tri-O-benzoyl-α-d-arabinofuranoside, and ring-opening reactions of these compounds with O- and S-nucleophiles were studied. Optimized conditions leading to the formation of the respective monosaccharide adducts (up to 96% isolated yields) and to α-(1→5)-linked disaccharide thioglycosides with 5'-OH unprotected (up to 30% isolated yields) were found. Basing on these results, a novel approach for effective differentiation of 3,5-diol system and 2-hydroxy group in arabinofuranose thioglycosides was proposed.

View Article and Find Full Text PDF

Methanesulfonic acid was shown to be an efficient and convenient substitute for ethereal HCl in reductive 4,6-O-benzylidene acetal ring-opening reaction with sodium cyanoborohydride in THF. Normal regioselectivity was observed, the 6-O-benzyl ethers with free 4-OH group being the major products of the reaction.

View Article and Find Full Text PDF

1-O-Acetyl-beta-D-galactopyranose (AcGal), a new substrate for beta-galactosidase, was synthesized in a stereoselective manner by the trichloroacetimidate procedure. Kinetic parameters (K(M) and k(cat)) for the hydrolysis of 1-O-acetyl-beta-D-galactopyranose catalyzed by the beta-D-galactosidase from Penicillium sp. were compared with similar characteristics for a number of natural and synthetic substrates.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlaakd6adjmpeoga021iq9p52o1i25jk3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once