Octahedral transition metal centers such as Fe(II), Co(II), and Co(III) have been used as templates in the construction of [3]pseudorotaxanes and [3]rotaxanes from various acyclic and macrocyclic fragments. The species obtained consist of a ring threaded by two string-like compounds. Such systems are relatively uncommon in the [3]rotaxane family, the most usual form being made up of a single axis threaded through two rings.
View Article and Find Full Text PDFA highly preorganized bioinspired dicopper complex with imidazole ligation catalyzes the selective benzylic para-C-H activation of 2,4,6-trimethylphenol under aerobic conditions, yielding either the stilbenequinone or 4-methoxymethyl-2,6-dimethylphenol depending on the solvent used.
View Article and Find Full Text PDFThe pyrazole-based diamide ligand N,N'-bis(2-pyridylmethyl)pyrazole-3,5-dicarboxamide (H(3)L) has been structurally characterised and successfully employed in the preparation of [2 x 2] grid-type complexes. Thus, the reaction of H(3)L with Cu(ClO(4))2.6H(2)O or Ni(ClO(4))2.
View Article and Find Full Text PDFThe synthesis of a new bioinspired dinucleating ligand scaffold based on a bridging pyrazolate with appended bis[2-(1-methylimidazolyl)methyl]aminomethyl chelate arms is reported. This ligand forms very stable copper complexes, and a series of different species is present in solution depending on the pH. Interconversions between these solution species are tracked and characterized spectroscopically, and X-ray crystallographic structures of three distinct complexes that correspond to the species present in solution from acidic to basic pH have been determined.
View Article and Find Full Text PDFThe reaction of [M(CN)6]3- (M = Cr3+, Fe3+, Co3+) with the nickel(II) complex of 2,4-diamino-1,3,5-triazin-6-yl-{3-(1,3,5,8,12-pentaazacyclotetradecane)} ([NiL]2+) in excess of ANO3 or ACl (A = Li+, Na+, K+, Rb+, Cs+, NH4+) leads to the cyano-bridged dinuclear assemblies A{[NiL][M(CN)6]}.xH2O (x = 2-5). X-ray structures of Li{[NiL][Cr(CN)6]}.
View Article and Find Full Text PDFA combination of molecular mechanics (MM), electron paramagnetic resonance spectroscopy (EPR), and spectra simulation (MM-EPR) has been used to determine the solution structures of di- and trinuclear copper(II) complexes of melamine-based oligomacrocyclic ligands. The spin Hamiltonian parameters of the mononuclear, melamine-appended macrocyclic ligand copper(II) complex have been determined by EPR spectroscopy and were also studied with DFT methods. These spin Hamiltonian parameters, together with the structural parameters obtained from models optimized with MM, have been used for the simulation of the EPR spectra of the di- and trinuclear complexes.
View Article and Find Full Text PDFThe reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units.
View Article and Find Full Text PDF