We implement the lasing eigenvalue problem (LEP) approach to study the electromagnetic field in the presence of a circular quantum wire (QW) made of a gain material and wrapped in graphene cover and a dimer of two identical graphene-covered QWs, at the threshold of stationary emission. LEP delivers the mode-specific eigenvalue pairs, namely the frequencies and the threshold values of the QW gain index for the plasmon and the wire modes of such nanolasers. In our analysis, we use quantum Kubo formalism for the graphene conductivity and classical Maxwell boundary-value problem for the field functions.
View Article and Find Full Text PDFWe report a prediction of the optical effect apparently not discussed earlier. As known both from theory and experiment, the gratings of flat graphene strips lying on dielectric substrates display moderate-Q resonances on the strip plasmon modes in the H-polarization case. In the plasmon resonances, high reflectance and absorbance are observed.
View Article and Find Full Text PDFResults from the electromagnetic modeling of the threshold conditions of hybrid plasmon modes of a laser based on a silver nanotube with an active core and covered with an active shell are presented. We study the modes of such a nanolaser that have their emission wavelengths in the visible-light range. Our analysis uses the mathematically grounded approach called the lasing eigenvalue problem (LEP) for the set of the Maxwell equations and the boundary and radiation conditions.
View Article and Find Full Text PDFWe consider the two-dimensional (2-D) problem of the H-polarized plane wave scattering by a linear chain of silver nanowires in a cloud of similar pseudo-randomly located wires, in the visible range. Numerical solution uses the field expansions in local coordinates and addition theorems for cylindrical functions and has a guaranteed convergence. The total scattering cross-sections and near- and far-zone field patterns are presented.
View Article and Find Full Text PDFWe study the scattering and absorption of an H-polarized plane electromagnetic wave by a circular silver nanotube in the visible range of wavelengths using the separation of variables. The computed spectra of the extinction cross section display several hybrid localized surface-plasmon resonances of the dipole and multipole type. Analytical equations are derived for their resonance wavelengths.
View Article and Find Full Text PDFThe lasing spectra and thresholds of a selectively pumped photonic molecule composed of two microdisks is investigated using effective index approximation and full-wave 2-D electromagnetic equations. The lasing eigenvalue problem formulation is used to find modal frequencies and threshold values of material gain. The influence of the optical coupling between active and passive microdisks on the lasing eigenvalues and directionalities of emission is studied.
View Article and Find Full Text PDFWe study numerically the effect of periodicity on the plasmon-assisted scattering and absorption of visible light by infinite and finite gratings of circular silver nanowires. The infinite grating is a convenient object of analysis because of the possibility to reduce the scattering problem to one period. We use the well-established method of partial separation of variables however make an important improvement by casting the resulting matrix equation to the Fredholm second-kind type, which guarantees convergence.
View Article and Find Full Text PDFWe present a theoretical design for a single-mode, truly subwavelength terahertz disk laser based on a nanocomposite gain medium comprising an array of normal-metal/ferromagnetic (FM) point contacts embedded in a thin dielectric layer. Stimulated emission of light occurs due to spin-flip relaxation of spin-polarized electrons injected from the FM side of the contacts. Ultrahigh electrical current densities in the contacts and a dielectric material with a large refractive index, neither condition being achievable in conventional semiconductor media, enables the thresholds of lasing to be overcome for the lowest-order modes of the disk, making single-mode operation possible.
View Article and Find Full Text PDFWe study the lasing eigenvalue problems for a periodic open optical resonator made of an infinite grating of circular dielectric cylinders standing in free space, in the E- and H-polarization modes. If possessing a "negative-absorption" refractive index, such cylinders model a chain of quantum wires made of the gain material under pumping. The initial-guess values for the lasing frequencies are provided by the plane-wave scattering problems.
View Article and Find Full Text PDFA numerical study is presented of several lowest in frequency modes in a spiral microlaser. The modes in an arbitrarily shaped active cavity are considered as solutions to the two-dimensional eigenproblem for the Muller boundary-integral equations. After discretization using the Nyström-type algorithm, the eigenvalues are found in terms of frequency and material-gain threshold.
View Article and Find Full Text PDFA two-dimensional reflector with resistive-type boundary conditions and varying resistivity is considered. The incident wave is a beam emitted by a complex-source-point feed simulating an aperture source. The problem is formulated as an electromagnetic time-harmonic boundary value problem and cast into the electric field integral equation form.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
February 2009
The near fields of small-size extended hemielliptic lenses made of rexolite and isotropic quartz and illuminated by E- and H-polarized plane waves are studied. Variations in the focal domain size, shape, and location are reported versus the angle of incidence of the incoming wave. The problem is solved numerically in a two-dimensional formulation.
View Article and Find Full Text PDFThe lasing spectra and threshold values of material gain for the dipole-type supermodes of an active microdisk concentrically coupled with an external passive microring are investigated. TE polarized modes are treated accurately using the linear electromagnetic formalism of the 2-D lasing eigenvalue problem (LEP) with exact boundary and radiation conditions. The influence of the microring on the lasing frequencies and thresholds is studied numerically, demonstrating threshold reduction opportunities.
View Article and Find Full Text PDFOur objective is the assessment of the accuracy of a conventional finite-difference time-domain (FDTD) code in the computation of the near- and far-field scattering characteristics of a circular dielectric cylinder. We excite the cylinder with an electric or magnetic line current and demonstrate the failure of the two-dimensional FDTD algorithm to accurately characterize the emission rate and the field patterns near high-Q whispering-gallery-mode resonances. This is proven by comparison with the exact series solutions.
View Article and Find Full Text PDFLasing modes in cyclic photonic molecules (CPMs) composed of several identical thin semiconductor microdisks in free space are studied in a linear approximation. Maxwell's equations with exact boundary conditions and the radiation condition at infinity are considered as a specific eigenvalue problem that enables one to find natural frequencies and threshold gains. It is demonstrated that careful tuning of the distance between the disks in CPMs is able to drastically reduce the lasing thresholds of the whispering-gallery modes having small azimuth indices.
View Article and Find Full Text PDFA fast and accurate method is developed to compute the natural frequencies and scattering characteristics of arbitrary-shape two-dimensional dielectric resonators. The problem is formulated in terms of a uniquely solvable set of second-kind boundary integral equations and discretized by the Galerkin method with angular exponents as global test and trial functions. The log-singular term is extracted from one of the kernels, and closed-form expressions are derived for the main parts of all the integral operators.
View Article and Find Full Text PDF