Publications by authors named "Alexander Hynes"

Unlabelled: Bacteriophages (phages) are bacterial-specific viruses that can be used alone or with antibiotics to reduce bacterial load. Most phages are unsuitable for therapy because they are "temperate" and can integrate into the host genome, forming a lysogen that is protected from subsequent phage infections. However, integrated phages can be awakened by stressors such as antibiotics.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that using certain viruses called temperate phages along with antibiotics can make the antibiotics work better against bacteria.
  • They tested this idea with 13 different antibiotics and noticed that some worked really well together while others didn’t change how the viruses behaved.
  • This study is important because it shows a new way to control how phages and bacteria interact, which could help in developing better treatments against bacterial infections.
View Article and Find Full Text PDF

Urinary tract infections (UTIs) are a problem worldwide, affecting almost half a billion people each year. Increasing antibiotic resistance and limited therapeutic options have led to the exploration of alternative therapies for UTIs, including bacteriophage (phage) therapy. This systematic review aims at evaluating the efficacy of phage therapy in treating UTIs.

View Article and Find Full Text PDF

Purpose Of Review: Neuropathic pain is a prevalent and burdensome condition. While oral medical therapies are the first-line treatment for refractory neuropathic pain, in some cases, infusion therapy may be employed. This article is a systematic review of recent publications regarding epidemiologic, pathophysiologic, diagnostic, and therapeutic advancements in the treatment of neuropathic pain using intravenous infusion therapy.

View Article and Find Full Text PDF

Gut microbiota have myriad roles in host physiology, development, and immunity. Though confined to the intestinal lumen by the epithelia, microbes influence distal systems via poorly characterized mechanisms. Recent work has considered the role of extracellular vesicles in interspecies communication, but whether they are involved in systemic microbe-host interaction is unclear.

View Article and Find Full Text PDF

Modern bacteriophage encapsulation methods based on polymers such as alginate have been developed recently for their use in phage therapy for veterinary purposes. In birds, it has been proven that using this delivery system allows the release of the bacteriophage in the small intestine, the site of infection by spp. This work designed an approach for phage therapy using encapsulation by ionotropic gelation of the lytic bacteriophage S1 for   in 2% / alginate beads using 2% / calcium chloride as crosslinking agent.

View Article and Find Full Text PDF

There is renewed interest in bacterial viruses (phages) as alternatives to antibiotics. All phage treatments to date have used virulent phages rather than temperate ones, as these can integrate into the genome of the bacterial host and lie dormant. However, temperate phages are abundant and easier to isolate.

View Article and Find Full Text PDF

Many bacteria carry bacteriophages (bacterial viruses) integrated in their genomes in the form of prophages, which replicate passively alongside their bacterial host. Environmental conditions can lead to prophage induction; the switching from prophage replication to lytic replication, that results in new bacteriophage progeny and the lysis of the bacterial host. Despite their abundance in the gut, little is known about what could be inducing these prophages.

View Article and Find Full Text PDF

Bacterial viruses (bacteriophages, phages) of the gut have increasingly become a focus in microbiome studies, with an understanding that they are likely key players in health and disease. However, characterization of the virome remains largely based on bioinformatic approaches, with the impact of these viromes inferred based on a century of knowledge from aerobic phage work. Studying the phages infecting anaerobes is difficult, as they are often technically demanding to isolate and propagate.

View Article and Find Full Text PDF

If, as we all know, only the strong survive, why do bacterial viruses (phages) encode weak suppressors of a bacterial immune system? In this issue of Cell Host & Microbe, Chevallereau et al. (2019) expertly demonstrate how, in the context of competition with other phages, weakness can be a strength.

View Article and Find Full Text PDF

Allergic eye disease is common, yet often overlooked in North America. In the U.S.

View Article and Find Full Text PDF

CRISPR-Cas systems are bacterial anti-viral systems, and bacterial viruses (bacteriophages, phages) can carry anti-CRISPR (Acr) proteins to evade that immunity. Acrs can also fine-tune the activity of CRISPR-based genome-editing tools. While Acrs are prevalent in phages capable of lying dormant in a CRISPR-carrying host, their orthologs have been observed only infrequently in virulent phages.

View Article and Find Full Text PDF

The CRISPR-Cas system owes its utility as a genome-editing tool to its origin as a prokaryotic immune system. The first demonstration of its activity against bacterial viruses (phages) is also the first record of phages evading that immunity . This evasion can be due to point mutations , large-scale deletions , DNA modifications , or phage-encoded proteins that interfere with the CRISPR-Cas system, known as anti-CRISPRs (Acrs) .

View Article and Find Full Text PDF

Much like social networks are used to connect with friends or relatives, bacteria communicate with relatives through quorum sensing. Viruses, though, were thought to be asocial-until now. Erez et al.

View Article and Find Full Text PDF

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas systems have been adapted into a powerful genome-editing tool. The basis for the flexibility of the tool lies in the adaptive nature of CRISPR-Cas as a bacterial immune system. Here, we describe a protocol to experimentally demonstrate the adaptive nature of this bacterial immune system by challenging the model organism for the study of CRISPR adaptation, Streptococcus thermophilus, with phages in order to detect natural CRISPR immunization.

View Article and Find Full Text PDF

Gene transfer agents (GTAs) are phage-like particles that can package and transfer a random piece of the producing cell's genome, but are unable to transfer all the genes required for their own production. As such, GTAs represent an evolutionary conundrum: are they selfish genetic elements propagating through an unknown mechanism, defective viruses, or viral structures "repurposed" by cells for gene exchange, as their name implies? In Rhodobacter capsulatus, production of the R. capsulatus GTA (RcGTA) particles is associated with a cluster of genes resembling a small prophage.

View Article and Find Full Text PDF

Key components of CRISPR-Cas systems have been adapted into a powerful genome-editing tool that has caught the headlines and the attention of the public. Canonically, a customized RNA serves to guide an endonuclease (e.g.

View Article and Find Full Text PDF

Unlabelled: The adaptive immune system of prokaryotes, called CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes), results in specific cleavage of invading nucleic acid sequences recognized by the cell's "memory" of past encounters. Here, we exploited the properties of native CRISPR-Cas systems to program the natural "memorization" process, efficiently generating immunity not only to a bacteriophage or plasmid but to any specifically chosen DNA sequence.

Importance: CRISPR-Cas systems have entered the public consciousness as genome editing tools due to their readily programmable nature.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated cas genes serve as a prokaryotic 'adaptive' immune system, protecting against foreign DNA elements such as bacteriophages. CRISPR-Cas systems function by incorporating short DNA 'spacers', homologous to invading DNA sequences, into a CRISPR array (adaptation). The array is then transcribed and matured into RNA molecules (maturation) that target homologous DNA for cleavage (interference).

View Article and Find Full Text PDF

The α-proteobacterium Rhodobacter capsulatus is a model organism for the study of bacterial photosynthesis and the bacteriophage-like gene transfer agent. Characterization of phages that infect Rhodobacter is extremely rare, and scarce for the α-proteobacteria in general. Here, we describe the discovery of the only functional Mu-like transposing phage to have been identified in the α-proteobacteria, RcapMu, resident in the genome-sequenced R.

View Article and Find Full Text PDF

Aerobic methanotrophic bacteria are capable of utilizing methane as their sole energy source. They are commonly found at the oxic/anoxic interfaces of environments such as wetlands, aquatic sediments, and landfills, where they feed on methane produced in anoxic zones of these environments. Until recently, all known species of aerobic methanotrophs belonged to the phylum Proteobacteria, in the classes Gammaproteobacteria and Alphaproteobacteria.

View Article and Find Full Text PDF