Background: For clinicians treating patients with infective endocarditis (IE), identifying the causative microorganisms poses a critical diagnostic challenge. Standard techniques including blood and heart valve cultures often yield inconclusive results. According to the recent 2023 Duke-ISCVID Criteria, molecular methods represent potent tools to enhance this aspect of IE diagnostics and guide subsequent therapeutic strategies.
View Article and Find Full Text PDFBackground: The microbial etiology of prosthetic valve infective endocarditis (PVE) can be difficult to identify. Our aim was to investigate the benefit of molecular imaging technique fluorescence in situ hybridization (FISH) combined with 16S rRNA-gene polymerase chain reaction (PCR) and sequencing (FISHseq) for the analysis of infected prosthetic heart valves.
Methods: We retrospectively evaluated the diagnostic outcome of 113 prosthetic valves from 105 patients with suspected PVE, treated in 2003-2013 in the Department of Cardiac Surgery, Charité University Medicine Berlin.
In this study, the mobility of nanoparticles in mucus and similar hydrogels as model systems was assessed to elucidate the link between microscopic diffusion behavior and macroscopic penetration of such gels. Differences in particle adhesion to mucus components were strongly dependent on particle coating. Particles coated with 2 kDa PEG exhibited a decreased adhesion to mucus components, whereas chitosan strongly increased the adhesion.
View Article and Find Full Text PDF