Publications by authors named "Alexander Holleitner"

Abstract: Interlayer excitons (IXs), composed of electron and hole states localized in different layers, excel in bilayers composed of atomically thin van der Waals materials such as semiconducting transition-metal dichalcogenides (TMDs) due to drastically enlarged exciton binding energies, exciting spin-valley properties, elongated lifetimes, and large permanent dipoles. The latter allows modification by electric fields and the study of thermalized bosonic quasiparticles, from the single particle level to interacting degenerate dense ensembles. Additionally, the freedom to combine bilayers of different van der Waals materials without lattice or relative twist-angle constraints leads to layer-hybridized and Moiré excitons, which can be widely engineered.

View Article and Find Full Text PDF

In van der Waals materials, external strain is an effective tool to manipulate and control electronic responses by changing the electronic bands upon lattice deformation. In particular, the band gap of the layered transition metal pentatelluride HfTe is sufficiently small to be inverted by subtle changes of the lattice parameters resulting in a strain-tunable topological phase transition. In that case, knowledge about the spatial homogeneity of electronic properties becomes crucial, especially for the microfabricated thin film circuits used in typical transport measurements.

View Article and Find Full Text PDF

Compressing light into nanocavities substantially enhances light-matter interactions, which has been a major driver for nanostructured materials research. However, extreme confinement generally comes at the cost of absorption and low resonator quality factors. Here we suggest an alternative optical multimodal confinement mechanism, unlocking the potential of hyperbolic phonon polaritons in isotopically pure hexagonal boron nitride.

View Article and Find Full Text PDF

We report lasing of moiré trapped interlayer excitons (IXs) by integrating a pristine hBN-encapsulated MoSe/WSe heterobilayer into a high- (>10) nanophotonic cavity. We control the cavity-IX detuning using a magnetic field and measure their dipolar coupling strength to be 78 ± 4 micro-electron volts, fully consistent with the 82 micro-electron volts predicted by theory. The emission from the cavity mode shows clear threshold-like behavior as the transition is tuned into resonance with the cavity.

View Article and Find Full Text PDF

We report on the optical absorption characteristics of selectively positioned sulfur vacancies in monolayer MoS, as observed by photovoltage and photocurrent experiments in an atomistic vertical tunneling circuit at cryogenic and room temperature. Charge carriers are resonantly photoexcited within the defect states before they tunnel through an hBN tunneling barrier to a graphene-based drain contact. Both photovoltage and photocurrent characteristics confirm the optical absorption spectrum as derived from ab initio GW and Bethe-Salpeter equation approximations.

View Article and Find Full Text PDF

The two-dimensional material hexagonal boron nitride (hBN) hosts luminescent centres with emission energies of ∼2 eV which exhibit pronounced phonon sidebands. We investigate the microscopic origin of these luminescent centres by combining calculations with non-perturbative open quantum system theory to study the emission and absorption properties of 26 defect transitions. Comparing the calculated line shapes with experiments we narrow down the microscopic origin to three carbon-based defects: CC, CC, and VC.

View Article and Find Full Text PDF

We report on the spatial coherence of interlayer exciton ensembles as formed in MoSe_{2}/WSe_{2} heterostructures and characterized by point-inversion Michelson-Morley interferometry. Below 10 K, the measured spatial coherence length of the interlayer excitons reaches values equivalent to the lateral expansion of the exciton ensembles. In this regime, the light emission of the excitons turns out to be homogeneously broadened in energy with a high temporal coherence.

View Article and Find Full Text PDF

Understanding the chemical and electronic properties of point defects in two-dimensional materials, as well as their generation and passivation, is essential for the development of functional systems, spanning from next-generation optoelectronic devices to advanced catalysis. Here, we use synchrotron-based X-ray photoelectron spectroscopy (XPS) with submicron spatial resolution to create sulfur vacancies (SVs) in monolayer MoS and monitor their chemical and electronic properties during the defect creation process. X-ray irradiation leads to the emergence of a distinct Mo 3d spectral feature associated with undercoordinated Mo atoms.

View Article and Find Full Text PDF

We utilize cavity-enhanced extinction spectroscopy to directly quantify the optical absorption of defects in MoS generated by helium ion bombardment. We achieve hyperspectral imaging of specific defect patterns with a detection limit below 0.01% extinction, corresponding to a detectable defect density below 1 × 10 cm.

View Article and Find Full Text PDF

A diode requires the combination of p- and n-type semiconductors or at least the defined formation of such areas within a given compound. This is a prerequisite for any IT application, energy conversion technology, and electronic semiconductor devices. Since the discovery of the pnp-switchable compound Ag Te Br in 2009, it is in principle possible to fabricate a diode from a single material without adjusting the semiconduction type by a defined doping level.

View Article and Find Full Text PDF

van der Waals heterostructures made from graphene and three-dimensional topological insulators promise very high electron mobilities, a nontrivial spin texture, and a gate-tunability of electronic properties. Such a combination of advantageous electronic characteristics can only be achieved through proximity effects in heterostructures, as graphene lacks a large enough spin-orbit interaction. In turn, the heterostructures are promising candidates for all-electrical control of proximity-induced spin phenomena.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDs) receive significant attention due to their outstanding electronic and optical properties. In this study, we investigate the electronic, optical, and thermoelectric properties of single and few layer [Formula: see text] in detail utilizing first-principles methods based on the density functional theory (DFT). Within the scope of both PBE and HSE06 including spin orbit coupling (SOC), the simulations predict the electronic band gap values to decrease as the number of layers increases.

View Article and Find Full Text PDF

Negatively charged boron vacancies () in hexagonal boron nitride (hBN) exhibit a broad emission spectrum due to strong electron-phonon coupling and Jahn-Teller mixing of electronic states. As such, the direct measurement of the zero-phonon line (ZPL) of has remained elusive. Here, we measure the room-temperature ZPL wavelength to be 773 ± 2 nm by coupling the hBN layer to the high- nanobeam cavity.

View Article and Find Full Text PDF

Atomically thin semiconductors can be readily integrated into a wide range of nanophotonic architectures for applications in quantum photonics and novel optoelectronic devices. We report the observation of nonlocal interactions of "free" trions in pristine hBN/MoS_{2}/hBN heterostructures coupled to single mode (Q>10^{4}) quasi 0D nanocavities. The high excitonic and photonic quality of the interaction system stems from our integrated nanofabrication approach simultaneously with the hBN encapsulation and the maximized local cavity field amplitude within the MoS_{2} monolayer.

View Article and Find Full Text PDF

Experimental control of local spin-charge interconversion is of primary interest for spintronics. Van der Waals (vdW) heterostructures combining graphene with a strongly spin-orbit coupled two-dimensional (2D) material enable such functionality by design. Electric spin valve experiments have thus far provided global information on such devices, while leaving the local interplay between symmetry breaking, charge flow across the heterointerface and aspects of topology unexplored.

View Article and Find Full Text PDF

For two-dimensional (2D) layered semiconductors, control over atomic defects and understanding of their electronic and optical functionality represent major challenges towards developing a mature semiconductor technology using such materials. Here, we correlate generation, optical spectroscopy, atomic resolution imaging, and ab initio theory of chalcogen vacancies in monolayer MoS. Chalcogen vacancies are selectively generated by in-vacuo annealing, but also focused ion beam exposure.

View Article and Find Full Text PDF

We demonstrate electrostatic switching of individual, site-selectively generated matrices of single photon emitters (SPEs) in MoS van der Waals heterodevices. We contact monolayers of MoS in field-effect devices with graphene gates and hexagonal boron nitride as the dielectric and graphite as bottom gates. After the assembly of such gate-tunable heterodevices, we demonstrate how arrays of defects, that serve as quantum emitters, can be site-selectively generated in the monolayer MoS by focused helium ion irradiation.

View Article and Find Full Text PDF

Integration of semiconducting transition metal dichalcogenides (TMDs) into functional optoelectronic circuitries requires an understanding of the charge transfer across the interface between the TMD and the contacting material. Here, we use spatially resolved photocurrent microscopy to demonstrate electronic uniformity at the epitaxial graphene/molybdenum disulfide (EG/MoS) interface. A 10× larger photocurrent is extracted at the EG/MoS interface when compared to the metal (Ti/Au)/MoS interface.

View Article and Find Full Text PDF

Structuring materials with atomic precision is the ultimate goal of nanotechnology and is becoming increasingly relevant as an enabling technology for quantum electronics/spintronics and quantum photonics. Here, we create atomic defects in monolayer MoS by helium ion (He-ion) beam lithography with a spatial fidelity approaching the single-atom limit in all three dimensions. Using low-temperature scanning tunneling microscopy (STM), we confirm the formation of individual point defects in MoS upon He-ion bombardment and show that defects are generated within 9 nm of the incident helium ions.

View Article and Find Full Text PDF

Crystals with symmetry-protected topological order, such as topological insulators, promise coherent spin and charge transport phenomena even in the presence of disorder at room temperature. We demonstrate how to image and read out the local conductance of helical surface modes in the prototypical topological insulators Bi_{2}Se_{3} and BiSbTe_{3}. We apply the so-called Shockley-Ramo theorem to design an optoelectronic probe circuit for the gapless surface states, and we find a well-defined conductance quantization at 1e^{2}/h within the experimental error without any external magnetic field.

View Article and Find Full Text PDF

Charge carriers in semiconducting transition metal dichalcogenides possess a valley degree of freedom that allows for optoelectronic applications based on the momentum of excitons. At elevated temperatures, scattering by phonons limits valley polarization, making a detailed knowledge about strength and nature of the interaction of excitons with phonons essential. In this work, we directly access exciton-phonon coupling in charge tunable single layer MoS devices by polarization resolved Raman spectroscopy.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) is of great interest for future sustainable energy conversion and storage, especially concerning fuel cell applications. The preparation of active, affordable, and scalable electrocatalysts and their application in fuel cell engines of hydrogen cars is a prominent step toward the reduction of air pollution, especially in urban areas. Alloying nanostructured Pt with lanthanides is a promising approach to enhance its catalytic ORR activity, whereby the development of a simple synthetic route turned out to be a nontrivial endeavor.

View Article and Find Full Text PDF

We demonstrate that prestructured metal nanogaps can be shaped on-chip to below 10 nm by femtosecond laser ablation. We explore the plasmonic properties and the nonlinear photocurrent characteristics of the formed tunnel junctions. The photocurrent can be tuned from multiphoton absorption toward the laser-induced strong-field tunneling regime in the nanogaps.

View Article and Find Full Text PDF

To combine the advantages of ultrafast femtosecond nano-optics with an on-chip communication scheme, optical signals with a frequency of several hundreds of THz need to be down-converted to coherent electronic signals propagating on-chip. So far, this has not been achieved because of the overall slow response time of nanoscale electronic circuits. Here, we demonstrate that 14 fs optical pulses in the near-infrared can drive electronic on-chip circuits with a prospective bandwidth up to 10 THz.

View Article and Find Full Text PDF

Core-shell semiconductor nanowires (NW) with internal quantum heterostructures are amongst the most complex nanostructured materials to be explored for assessing the ultimate capabilities of diverse ultrahigh-resolution imaging techniques. To probe the structure and composition of these materials in their native environment with minimal damage and sample preparation calls for high-resolution electron or ion microscopy methods, which have not yet been tested on such classes of ultrasmall quantum nanostructures. Here, we demonstrate that scanning helium ion microscopy (SHeIM) provides a powerful and straightforward method to map quantum heterostructures embedded in complex III-V semiconductor NWs with unique material contrast at ∼1 nm resolution.

View Article and Find Full Text PDF