Publications by authors named "Alexander Hogrebe"

The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known.

View Article and Find Full Text PDF

The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known, but quantifying this is required to understand the constraints faced by cell systems as they evolve.

View Article and Find Full Text PDF

Stable-isotope labeling with amino acids in cell culture (SILAC)-based metabolic labeling is a widely adopted proteomics approach that enables quantitative comparisons among a variety of experimental conditions. Despite its quantitative capacity, SILAC experiments analyzed with data-dependent acquisition (DDA) do not fully leverage peptide pair information for identification and suffer from undersampling compared to label-free proteomic experiments. Herein, we developed a DDA strategy that coisolates and fragments SILAC peptide pairs and uses y-ions for their relative quantification.

View Article and Find Full Text PDF

In mass spectrometry (MS)-based quantitative proteomics, labeling with isobaric mass tags such as iTRAQ and TMT can substantially improve sample throughput and reduce peptide missing values. Nonetheless, the quantification of labeled peptides tends to suffer from reduced accuracy due to the co-isolation of co-eluting precursors of similar mass-to-charge. Acquisition approaches such as multistage MS3 or ion mobility separation address this problem, yet are difficult to audit and limited to expensive instrumentation.

View Article and Find Full Text PDF

Data-independent acquisition (DIA) for liquid chromatography tandem mass spectrometry (LC-MS/MS) can improve the depth and reproducibility of the acquired proteomics datasets. DIA solves some limitations of the conventional data-dependent acquisition (DDA) strategy, for example, bias in intensity-dependent precursor selection and limited dynamic range. These advantages, together with the recent developments in speed, sensitivity, and resolution in MS technology, position DIA as a great alternative to DDA.

View Article and Find Full Text PDF

Integrated analysis of genomes, transcriptomes, proteomes and drug responses of cancer cell lines (CCLs) is an emerging approach to uncover molecular mechanisms of drug action. We extend this paradigm to measuring proteome activity landscapes by acquiring and integrating quantitative data for 10,000 proteins and 55,000 phosphorylation sites (p-sites) from 125 CCLs. These data are used to contextualize proteins and p-sites and predict drug sensitivity.

View Article and Find Full Text PDF

Quantitative phosphoproteomics has transformed investigations of cell signaling, but it remains challenging to scale the technology for high-throughput analyses. Here we report a rapid and reproducible approach to analyze hundreds of phosphoproteomes using data-independent acquisition (DIA) with an accurate site localization score incorporated into Spectronaut. DIA-based phosphoproteomics achieves an order of magnitude broader dynamic range, higher reproducibility of identification, and improved sensitivity and accuracy of quantification compared to state-of-the-art data-dependent acquisition (DDA)-based phosphoproteomics.

View Article and Find Full Text PDF

In the recent year, we felt like we were not truly showing our full potential in our PhD projects, and so we were very happy and excited when YPIC announced the ultimate proteomics challenge. This gave us the opportunity of showing off and procrastinating at the same time:) The challenge was to identify the amino acid sequence of 19 synthetic peptides made up from an English text and then find the book that it came from. For this task we chose to run on an Orbitrap Fusion™ Lumos™ Tribrid™ Mass Spectrometer with two different sensitive MS2 resolutions, each with both HCD and CID fragmentation consecutively.

View Article and Find Full Text PDF

The European Academy for Biomedical Science (ENABLE) is an initiative funded by the European Union Horizon 2020 program involving four renowned European Research Institutes (Institute for Research in Biomedicine-IRB Barcelona, Spain; Radboud Institute for Molecular Life Sciences-RIMLS, The Netherlands; Novo Nordisk Foundation Center for Protein Research-NNF CPR, Denmark; European School of Molecular Medicine-SEMM, Italy) and an innovative science communication agency (Scienseed). With the aim of promoting biomedical science of excellence in Europe, ENABLE organizes an annual three-day international event. This gathering includes a top-level scientific symposium bringing together leading scientists, PhD students, and post-doctoral fellows; career development activities supporting the progression of young researchers and fostering discussion about opportunities beyond the bench; and outreach activities stimulating the interaction between science and society.

View Article and Find Full Text PDF

The European Academy for Biomedical Science (ENABLE) is an initiative funded by the European Union Horizon 2020 program involving four renowned European Research Institutes (Institute for Research in Biomedicine—IRB Barcelona, Spain; Radboud Institute for Molecular Life Sciences—RIMLS, the Netherlands; Novo Nordisk Foundation Center for Protein Research—NNF CPR, Denmark; European School of Molecular Medicine—SEMM, Italy) and an innovative science communication agency (Scienseed). With the aim of promoting biomedical science of excellence in Europe, ENABLE organizes an annual three-day international event. This gathering includes a top-level scientific symposium bringing together leading scientists, PhD students, and post-doctoral fellows; career development activities supporting the progression of young researchers and fostering discussion about opportunities beyond the bench; and outreach activities stimulating the interaction between science and society.

View Article and Find Full Text PDF

The EUROPEAN ACADEMY FOR BIOMEDICAL SCIENCE (ENABLE) is an initiative funded by the European Union Horizon 2020 program involving four renowned European Research Institutes (Institute for Research in Biomedicine-IRB Barcelona, Spain; Radboud Institute for Molecular Life Sciences-RIMLS, the Netherlands; Novo Nordisk Foundation Center for Protein Research-NNF CPR, Denmark; European School of Molecular Medicine-SEMM, Italy) and an innovative science communication agency (Scienseed). With the aim of promoting biomedical science of excellence in Europe, ENABLE organizes an annual three-day international event. This gathering includes a top-level scientific symposium bringing together leading scientists, PhD students, and post-doctoral fellows; career development activities supporting the progression of young researchers and fostering discussion about opportunities beyond the bench; and outreach activities stimulating the interaction between science and society.

View Article and Find Full Text PDF

The EUROPEAN ACADEMY FOR BIOMEDICAL SCIENCE (ENABLE) is an initiative funded by the European Union Horizon 2020 program involving four renowned European research institutes (Institute for Research in Biomedicine-IRB Barcelona, Spain; Radboud Institute for Molecular Life Sciences-RIMLS, the Netherlands; Novo Nordisk Foundation Center for Protein Research-NNF CPR, Denmark; European School of Molecular Medicine-SEMM, Italy) and an innovative science communication agency (Scienseed). With the aim to promote biomedical science of excellence in Europe, ENABLE organizes an annual three-day international event. This gathering includes a top-level scientific symposium bringing together leading scientists, PhD students, and post-doctoral fellows; career development activities supporting the progression of young researchers and fostering discussion about opportunities beyond the bench; outreach activities stimulating the interaction between science and society.

View Article and Find Full Text PDF

Comprehensive mass spectrometry (MS)-based proteomics is now feasible, but reproducible quantification remains challenging, especially for post-translational modifications such as phosphorylation. Here, we compare the most popular quantification techniques for global phosphoproteomics: label-free quantification (LFQ), stable isotope labeling by amino acids in cell culture (SILAC) and MS- and MS-measured tandem mass tags (TMT). In a mixed species comparison with fixed phosphopeptide ratios, we find LFQ and SILAC to be the most accurate techniques.

View Article and Find Full Text PDF

Progress in proteomics is mainly driven by advances in mass spectrometric (MS) technologies. Here we benchmarked the performance of the latest MS instrument in the benchtop Orbitrap series, the Q Exactive HF-X, against its predecessor for proteomics applications. A new peak-picking algorithm, a brighter ion source, and optimized ion transfers enable productive MS/MS acquisition above 40 Hz at 7500 resolution.

View Article and Find Full Text PDF