Publications by authors named "Alexander Hertenstein"

One of the most challenging problems in developmental neurosciences is to understand the establishment and maintenance of specific membrane contacts between axonal, dendritic, and glial processes in the neuropils, which eventually secure neuronal connectivity. However, underlying cell recognition events are pivotal in other tissues as well. This brief review focuses on the pleiotropic functions of a small, evolutionarily conserved group of proteins of the immunoglobulin superfamily involved in cell recognition.

View Article and Find Full Text PDF

The rolling pebbles gene of Drosophila encodes two proteins, one of which, Rols7, is essential for myoblast fusion. In addition, Rols 7 is expressed during myofibrillogenesis and in the mature muscles. Here it overlaps with alpha-Actinin (alpha-Actn) and the N-terminus of D-Titin/Kettin/Zormin in the Z-line of the sarcomeres.

View Article and Find Full Text PDF

The Drosophila cell adhesion molecule Rst plays key roles during the development of the embryonic musculature, spacing of ommatidia in the compound eye and of sensory organs on the antenna, as well as in the neuronal wiring of the optic lobe. In rst(CT) mutants lacking the cytoplasmic domain of the Rst protein, cell sorting and apoptosis in the eye are affected, suggesting a requirement of this domain for Rst function. To identify potential interacting proteins, yeast two-hybrid screens were performed using the cytoplasmic domains of Rst and its paralogue Kirre as baits.

View Article and Find Full Text PDF

The D. melanogaster rst and kirre genes encode two highly related immunoglobulin-like cell adhesion molecules that function redundantly during embryonic muscle development. The two genes appear to be derived from a common ancestor by gene duplication.

View Article and Find Full Text PDF