Publications by authors named "Alexander Heifetz"

Metallic structures produced with laser powder bed fusion (LPBF) additive manufacturing method (AM) frequently contain microscopic porosity defects, with typical approximate size distribution from one to 100 microns. Presence of such defects could lead to premature failure of the structure. In principle, structural integrity assessment of LPBF metals can be accomplished with nondestructive evaluation (NDE).

View Article and Find Full Text PDF

One of the key challenges in laser powder bed fusion (LPBF) additive manufacturing of metals is the appearance of microscopic pores in 3D-printed metallic structures. Quality control in LPBF can be accomplished with non-destructive imaging of the actual 3D-printed structures. Thermal tomography (TT) is a promising non-contact, non-destructive imaging method, which allows for the visualization of subsurface defects in arbitrary-sized metallic structures.

View Article and Find Full Text PDF

Nuclear reactor safety and efficiency can be enhanced through the development of accurate and fast methods for prediction of reactor transient (RT) states. Physics informed neural networks (PINNs) leverage deep learning methods to provide an alternative approach to RT modeling. Applications of PINNs in monitoring of RTs for operator support requires near real-time model performance.

View Article and Find Full Text PDF

The recent COVID-19 pandemic has served as a timely reminder that the existing drug discovery is a laborious, expensive, and slow process. Never has there been such global demand for a therapeutic treatment to be identified as a matter of such urgency. Unfortunately, this is a scenario likely to repeat itself in future, so it is of interest to explore ways in which to accelerate drug discovery at pandemic speed.

View Article and Find Full Text PDF

Structure-based drug design (SBDD) is rapidly evolving to be a fundamental tool for faster and more cost-effective methods of lead drug discovery. SBDD aims to offer a computational replacement to traditional high-throughput screening (HTS) methods of drug discovery. This "virtual screening" technique utilizes the structural data of a target protein in conjunction with large databases of potential drug candidates and then applies a range of different computational techniques to determine which potential candidates are likely to bind with high affinity and efficacy.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) are essential for the function of many proteins. Aberrant PPIs have the potential to lead to disease, making PPIs promising targets for drug discovery. There are over 64,000 PPIs in the human interactome reference database; however, to date, very few PPI modulators have been approved for clinical use.

View Article and Find Full Text PDF

Drug-target residence time, the duration of binding at a given protein target, has been shown in some protein families to be more significant for conferring efficacy than binding affinity. To carry out efficient optimization of residence time in drug discovery, machine learning models that can predict that value need to be developed. One of the main challenges with predicting residence time is the paucity of data.

View Article and Find Full Text PDF

The development of vaccines for the treatment of COVID-19 is paving the way for new hope. Despite this, the risk of the virus mutating into a vaccine-resistant variant still persists. As a result, the demand of efficacious drugs to treat COVID-19 is still pertinent.

View Article and Find Full Text PDF

We apply the hit-to-lead ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) and lead-optimization TIES (thermodynamic integration with enhanced sampling) methods to compute the binding free energies of a series of ligands at the A and A adenosine receptors, members of a subclass of the GPCR (G protein-coupled receptor) superfamily. Our predicted binding free energies, calculated using ESMACS, show a good correlation with previously reported experimental values of the ligands studied. Relative binding free energies, calculated using TIES, accurately predict experimentally determined values within a mean absolute error of approximately 1 kcal mol.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCRs) are the largest superfamily of membrane proteins, regulating almost every aspect of cellular activity and serving as key targets for drug discovery. We have identified an accurate and reliable computational method to characterize the strength and chemical nature of the interhelical interactions between the residues of transmembrane (TM) domains during different receptor activation states, something that cannot be characterized solely by visual inspection of structural information. Using the fragment molecular orbital (FMO) quantum mechanics method to analyze 35 crystal structures representing different branches of the class A GPCR family, we have identified 69 topologically equivalent TM residues that form a consensus network of 51 inter-TM interactions, providing novel results that are consistent with and help to rationalize experimental data.

View Article and Find Full Text PDF

Estimating the range of three-dimensional structures (conformations) that are available to a molecule is a key component of computer-aided drug design. Quantum mechanical simulation offers improved accuracy over forcefield methods, but at a high computational cost. The question is whether this increased cost can be justified in a context in which high-throughput analysis of large numbers of molecules is often key.

View Article and Find Full Text PDF

Proteins are vital components of living systems, serving as building blocks, molecular machines, enzymes, receptors, ion channels, sensors, and transporters. Protein-protein interactions (PPIs) are a key part of their function. There are more than 645,000 reported disease-relevant PPIs in the human interactome, but drugs have been developed for only 2% of these targets.

View Article and Find Full Text PDF

Arrestin binding to G protein-coupled receptors (GPCRs) plays a vital role in receptor signaling. Recently, the crystal structure of rhodopsin bound to activated visual arrestin was resolved using XFEL (X-ray free electron laser). However, even with the crystal structure in hand, our ability to understand GPCR-arrestin binding is limited by the availability of accurate tools to explore receptor-arrestin interactions.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) have enormous physiological and biomedical importance, and therefore it is not surprising that they are the targets of many prescribed drugs. Further progress in GPCR drug discovery is highly dependent on the availability of protein structural information. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions.

View Article and Find Full Text PDF

The accurate evaluation of receptor-ligand interactions is an essential part of rational drug design. While quantum mechanical (QM) methods have been a promising means by which to achieve this, traditional QM is not applicable for large biological systems due to its high computational cost. Here, the fragment molecular orbital (FMO) method has been combined with the density-functional tight-binding (DFTB) method to compute energy calculations of biological systems in seconds.

View Article and Find Full Text PDF

The understanding of binding interactions between a protein and a small molecule plays a key role in the rationalization of potency and selectivity and in design of new ideas. However, even when a target of interest is structurally enabled, visual inspection and force field-based molecular mechanics calculations cannot always explain the full complexity of the molecular interactions that are critical in drug design. Quantum mechanical methods have the potential to address this shortcoming, but traditionally, computational expense has made the application of these calculations impractical.

View Article and Find Full Text PDF

Transmission of information using ultrasonic elastic waves on existing metallic pipes provides an alternative communication option across physical barriers in a highly partitioned industrial complex, such as a nuclear facility. This work investigates the feasibility of the transmission of digital images over metallic pipes. Ultrasonic communication systems for transmission of images on a nuclear-grade stainless steel pipe were assembled for bench-scale demonstration.

View Article and Find Full Text PDF

There has been a recent and prolific expansion in the number of GPCR crystal structures being solved: in both active and inactive forms and in complex with ligand, with G protein and with each other. Despite this, there is relatively little experimental information about the precise configuration of GPCR oligomers during these different biologically relevant states. While it may be possible to identify the experimental conditions necessary to crystallize a GPCR preferentially in a specific structural conformation, computational approaches afford a potentially more tractable means of describing the probability of formation of receptor dimers and higher order oligomers.

View Article and Find Full Text PDF

There has been fantastic progress in solving GPCR crystal structures. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions.

View Article and Find Full Text PDF

Drug-target residence time, the length of time for which a small molecule stays bound to its receptor target, has increasingly become a key property for optimization in drug discovery programs. However, its in silico prediction has proven difficult. Here we describe a method, using atomistic ensemble-based steered molecular dynamics (SMD), to observe the dissociation of ligands from their target G protein-coupled receptor in a time scale suitable for drug discovery.

View Article and Find Full Text PDF

Antagonism of CCR9 is a promising mechanism for treatment of inflammatory bowel disease, including ulcerative colitis and Crohn's disease. There is limited experimental data on CCR9 and its ligands, complicating efforts to identify new small molecule antagonists. We present here results of a successful virtual screening and rational hit-to-lead campaign that led to the discovery and initial optimization of novel CCR9 antagonists.

View Article and Find Full Text PDF

GPCR modeling approaches are widely used in the hit-to-lead (H2L) and lead optimization (LO) stages of drug discovery. The aims of these modeling approaches are to predict the 3D structures of the receptor-ligand complexes, to explore the key interactions between the receptor and the ligand and to utilize these insights in the design of new molecules with improved binding, selectivity or other pharmacological properties. In this book chapter, we present a brief survey of key computational approaches integrated with hierarchical GPCR modeling protocol (HGMP) used in hit-to-lead (H2L) and in lead optimization (LO) stages of structure-based drug discovery (SBDD).

View Article and Find Full Text PDF

There is a substantial amount of historical ligand binding data available from site-directed mutagenesis (SDM) studies of many different GPCR subtypes. This information was generated prior to the wave of GPCR crystal structure, in an effort to understand ligand binding with a view to drug discovery. Concerted efforts to determine the atomic structure of GPCRs have proven extremely successful and there are now more than 80 GPCR crystal structure in the PDB database, many of which have been obtained in the presence of receptor ligands and associated G proteins.

View Article and Find Full Text PDF

The understanding of binding interactions between any protein and a small molecule plays a key role in the rationalization of affinity and selectivity. It is essential for an efficient structure-based drug design (SBDD) process. FMO enables ab initio approaches to be applied to systems that conventional quantum-mechanical (QM) methods would find challenging.

View Article and Find Full Text PDF

The regulation of metabolic processes by the Indy (I'm Not Dead Yet) (SLC13A5/NaCT) gene was revealed through studies in Drosophila melanogaster and Caenorhabditis elegans. Reducing the expression of Indy in these species extended their life span by a mechanism resembling caloric restriction, without reducing food intake. In D.

View Article and Find Full Text PDF