A key advantage of utilizing van-der-Waals (vdW) materials as defect-hosting platforms for quantum applications is the controllable proximity of the defect to the surface or the substrate allowing for improved light extraction, enhanced coupling with photonic elements, or more sensitive metrology. However, this aspect results in a significant challenge for defect identification and characterization, as the defect's properties depend on the the atomic environment. This study explores how the environment can influence the properties of carbon impurity centers in hexagonal boron nitride (hBN).
View Article and Find Full Text PDFWe present a fully charge self-consistent implementation of dynamical mean field theory (DMFT) combined with density functional theory (DFT) for electronic structure calculations of materials with strong electronic correlations. The implementation uses theQuantum ESPRESSOpackage for the DFT calculations, theWannier90code for the up-/down-folding and theTRIQSsoftware package for setting up and solving the DMFT equations. All components are available under open source licenses, are MPI-parallelized, fully integrated in the respective packages, and use an hdf5 archive interface to eliminate file parsing.
View Article and Find Full Text PDFA livestock population can be characterized by different population genetic parameters, such as linkage disequilibrium and recombination rate between pairs of genetic markers. The population structure, which may be caused by family stratification, has an influence on the estimates of these parameters. An expectation maximization algorithm has been proposed for estimating these parameters in half-sibs without phasing the progeny.
View Article and Find Full Text PDF