Motivation: The development of Approximate Bayesian Computation (ABC) algorithms for parameter inference which are both computationally efficient and scalable in parallel computing environments is an important area of research. Monte Carlo rejection sampling, a fundamental component of ABC algorithms, is trivial to distribute over multiple processors but is inherently inefficient. While development of algorithms such as ABC Sequential Monte Carlo (ABC-SMC) help address the inherent inefficiencies of rejection sampling, such approaches are not as easily scaled on multiple processors.
View Article and Find Full Text PDFHeight has an extremely polygenic pattern of inheritance. Genome-wide association studies (GWAS) have revealed hundreds of common variants that are associated with human height at genome-wide levels of significance. However, only a small fraction of phenotypic variation can be explained by the aggregate of these common variants.
View Article and Find Full Text PDFI seek to comprehensively evaluate the quality of the Genetic Analysis Workshop 17 (GAW17) data set by examining the accuracy of its genotype calls, which were based on the pilot3 data of the 1000 Genomes Project. Taking advantage of the 1000 Genomes Project/HapMap sample intersect, I compared GAW17 genotype calls to HapMap III, release 2, genotype calls for an individual. These genotype calls should be concordant almost everywhere.
View Article and Find Full Text PDF