Networks in nature are often formed within a spatial domain in a dynamical manner, gaining links and nodes as they develop over time. Motivated by the growth and development of neuronal networks, we propose a class of spatially-based growing network models and investigate the resulting statistical network properties as a function of the dimension and topology of the space in which the networks are embedded. In particular, we consider two models in which nodes are placed one by one in random locations in space, with each such placement followed by configuration relaxation toward uniform node density, and connection of the new node with spatially nearby nodes.
View Article and Find Full Text PDF