Tumor associated epilepsy is a common and debilitating co-morbidity of brain tumors, for which inadequate treatments are available. Additionally, animal models suggest a potential link between seizures and tumor progression. Our group has previously described a mouse model of diffusely infiltrating glioma and associated chronic epilepsy.
View Article and Find Full Text PDFMalaria transmission begins when infected female mosquitos deposit parasites into the mammalian host's skin during a bloodmeal. The salivary gland-resident sporozoite parasites migrate to the bloodstream, subsequently invading and replicating within hepatocytes. As mosquitos are more active at night, with a 24-hour rhythm, we investigated whether their salivary glands are under circadian control, anticipating bloodmeals and modulating sporozoite biology for host encounters.
View Article and Find Full Text PDFGliomas are highly aggressive brain tumors characterized by poor prognosis and composed of diffusely infiltrating tumor cells that intermingle with non-neoplastic cells in the tumor microenvironment, including neurons. Neurons are increasingly appreciated as important reactive components of the glioma microenvironment, due to their role in causing hallmark glioma symptoms, such as cognitive deficits and seizures, as well as their potential ability to drive glioma progression. Separately, mTOR signaling has been shown to have pleiotropic effects in the brain tumor microenvironment, including regulation of neuronal hyperexcitability.
View Article and Find Full Text PDFThe dopamine D1 receptor (D1R) is a promising target for treating various psychiatric disorders. While upregulation of D1R activity has shown potential in alleviating motor and cognitive symptoms, orthosteric agonists have limitations, restricting their clinical applications. However, the discovery of several allosteric compounds specifically targeting the D1R, such as LY3154207, has opened new therapeutic avenues.
View Article and Find Full Text PDFThe dopamine D1 receptor (D1R) is a promising target for treating various psychiatric disorders. While upregulation of D1R activity has shown potential in alleviating motor and cognitive symptoms, orthosteric agonists have limitations, restricting their clinical applications. However, the discovery of several allosteric compounds specifically targeting the D1R, such as LY3154207, has opened new therapeutic avenues.
View Article and Find Full Text PDFGlioblastoma (GBM) diffusely infiltrates the brain and intermingles with non-neoplastic brain cells, including astrocytes, neurons and microglia/myeloid cells. This complex mixture of cell types forms the biological context for therapeutic response and tumor recurrence. We used single-nucleus RNA sequencing and spatial transcriptomics to determine the cellular composition and transcriptional states in primary and recurrent glioma and identified three compositional 'tissue-states' defined by cohabitation patterns between specific subpopulations of neoplastic and non-neoplastic brain cells.
View Article and Find Full Text PDFIllicitly manufactured fentanyl is driving the current opioid crisis, and various fentanyl analogs are appearing in recreational drug markets worldwide. To assess the potential health risks posed by fentanyl analogs, it is necessary to understand structure-activity relationships for these compounds. Here we compared the pharmacology of two structurally related fentanyl analogs implicated in opioid overdose: cyclopropylfentanyl and valerylfentanyl.
View Article and Find Full Text PDFFour sets of diastereomeric C9-alkenyl 5-phenylmorphans, varying in the length of the C9-alkenyl chain, were designed to examine the effect of these spatially distinct ligands on opioid receptors. Functional activity was obtained by forskolin-induced cAMP accumulation assays and several compounds were examined in the [S]GTPgS assay and in an assay for respiratory depression. In each of the four sets, similarities and differences were observed dependent on the length of their C9-alkenyl chain and, most importantly, their stereochemistry.
View Article and Find Full Text PDFOrganic semiconductors have many desirable properties including improved manufacturing and flexible mechanical properties. Due to the vastness of chemical space, it is essential to efficiently explore chemical space when designing new materials, including through the use of generative techniques. New generative machine learning methods for molecular design continue to be published in the literature at a significant rate but successfully adapting methods to new chemistry and problem domains remains difficult.
View Article and Find Full Text PDFComput Struct Biotechnol J
May 2022
Fentanyl and its analogs are selective agonists of the µ-opioid receptor (MOR). Among novel synthetic opioids (NSOs), they dominate the recreational drug market and are the main culprits for the opioid crisis, which has been exacerbated by the COVID-19 pandemic. By taking advantage of the crystal structures of the MOR, several groups have investigated the binding mechanism of fentanyl, but have not reached a consensus, in terms of both the binding orientation and the fentanyl conformation.
View Article and Find Full Text PDFWhile several studies have attributed the development of tumour-associated seizures to an excitatory-inhibitory imbalance, we have yet to resolve the spatiotemporal interplay between different types of neuron in glioma-infiltrated cortex. Herein, we combined methods for single unit analysis of microelectrode array recordings with wide-field optical mapping of Thy1-GCaMP pyramidal cells in an ex vivo acute slice model of diffusely infiltrating glioma. This enabled simultaneous tracking of individual neurons from both excitatory and inhibitory populations throughout seizure-like events.
View Article and Find Full Text PDFMaterials exhibiting higher mobilities than conventional organic semiconducting materials such as fullerenes and fused thiophenes are in high demand for applications in printed electronics. To discover new molecules in the heteroacene family that might show improved hole mobility, three design methods were applied. Machine learning (ML) models were generated based on previously calculated hole reorganization energies of a quarter million examples of heteroacenes, where the energies were calculated by applying density functional theory (DFT) and a massive cloud computing environment.
View Article and Find Full Text PDFDioxygenase enzymes are essential protein catalysts for the breakdown of catecholic rings, structural components of plant woody tissue. This powerful chemistry is used in nature to make antibiotics and other bioactive materials or degrade plant material, but we have a limited understanding of the breadth and depth of substrate space for these potent catalysts. Here we report steady-state and pre-steady-state kinetic analysis of dopamine derivatives substituted at the 6-position as substrates of L-DOPA dioxygenase, and an analysis of that activity as a function of the electron-withdrawing nature of the substituent.
View Article and Find Full Text PDFObjective: Activated clotting time (ACT)-based heparin dosing during percutaneous intervention (PCI) is recommended by Society guidelines. However, the relationship between ACT and outcome in the setting of elective PCI has not been sufficiently studied. We sought to evaluate the in-hospital outcome of patients undergoing elective PCI while receiving fixed-dose heparin without ACT measurement versus those with ACT-guided management.
View Article and Find Full Text PDFSmall-molecule inhibitors of p97 are useful tools to study p97 function. Human p97 is an important AAA ATPase due to its diverse cellular functions and implication in mediating the turnover of proteins involved in tumorigenesis and virus infections. Multiple p97 inhibitors identified from previous high-throughput screening studies are thiol-reactive compounds targeting Cys522 in the D2 ATP-binding domain.
View Article and Find Full Text PDFDiffusely infiltrating gliomas are known to cause alterations in cortical function, vascular disruption, and seizures. These neurological complications present major clinical challenges, yet their underlying mechanisms and causal relationships to disease progression are poorly characterized. Here, we follow glioma progression in awake Thy1-GCaMP6f mice using in vivo wide-field optical mapping to monitor alterations in both neuronal activity and functional hemodynamics.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFMaterials exhibiting higher mobilities than conventional organic semiconducting materials such as fullerenes and fused thiophenes are in high demand for applications in printed electronics. To discover new molecules in the heteroacene family that might show improved charge mobility, a massive theoretical screen of hole conducting properties of molecules was performed by using a cloud-computing environment. Over 7 000 000 structures of fused furans, thiophenes and selenophenes were generated and 250 000 structures were randomly selected to perform density functional theory (DFT) calculations of hole reorganization energies.
View Article and Find Full Text PDFSheathless guiding catheters are a valuable tool in the catheterization labor and may assist the operator when dealing with heavily calcified and tortuous vessels. Nevertheless, when hostile anatomy prevents successful percutaneous coronary interventions (PCI) from the radial access, transfemoral use of sheathless guide can assist in overcoming these challenges in a safe manner.
View Article and Find Full Text PDFAlzheimer's disease and other forms of cognitive decline are significantly more prevalent in post-menopausal women. Decreased estrogen levels, due to menopause or ovariectomy, may contribute to memory impairments and neurodegeneration. Another result of decreased estrogen levels is elevated luteinizing hormone (LH).
View Article and Find Full Text PDFAll presently known geroprotective chemical compounds of plant and microbial origin are caloric restriction mimetics because they can mimic the beneficial lifespan- and healthspan-extending effects of caloric restriction diets without the need to limit calorie supply. We have discovered a geroprotective chemical compound of mammalian origin, a bile acid called lithocholic acid, which can delay chronological aging of the budding yeast under caloric restriction conditions. Here, we investigated mechanisms through which lithocholic acid can delay chronological aging of yeast limited in calorie supply.
View Article and Find Full Text PDFProstate cancer is the second leading cause of cancer-related deaths in men in North America and there is an urgent need for development of more effective therapeutic treatments against this disease. We have recently shown that diindolylmethane (DIM) and several of its halogenated derivatives (ring-DIMs) induce death and protective autophagy in human prostate cancer cells. However, the in vivo efficacy of ring-DIMs and the use of autophagy inhibitors as adjuvant therapy have not yet been studied in vivo.
View Article and Find Full Text PDFThe hippocampus is traditionally thought to transmit contextual information to limbic structures where it acquires valence. Using freely moving calcium imaging and optogenetics, we show that while the dorsal CA1 subregion of the hippocampus is enriched in place cells, ventral CA1 (vCA1) is enriched in anxiety cells that are activated by anxiogenic environments and required for avoidance behavior. Imaging cells defined by their projection target revealed that anxiety cells were enriched in the vCA1 population projecting to the lateral hypothalamic area (LHA) but not to the basal amygdala (BA).
View Article and Find Full Text PDF