During past glacial periods, the land cover of Northern Eurasia and North America repeatedly shifted between open steppe tundra and boreal/temperate forest. Tracking these changes and estimating the coverage of open versus forested vegetation in past glacial and interglacial landscapes is notoriously difficult because the characteristic dwarf birches of the tundra and the tree birches of the boreal and temperate forests produce similar pollen grains that are difficult to distinguish in the pollen record. One objective approach to separating dwarf birch pollen from tree birch pollen is to use grain size statistics.
View Article and Find Full Text PDFPlant roots influence many ecological and biogeochemical processes, such as carbon, water and nutrient cycling. Because of difficult accessibility, knowledge on plant root growth dynamics in field conditions, however, is fragmentary at best. Minirhizotrons, i.
View Article and Find Full Text PDFThe recent developments in artificial intelligence have the potential to facilitate new research methods in ecology. Especially Deep Convolutional Neural Networks (DCNNs) have been shown to outperform other approaches in automatic image analyses. Here we apply a DCNN to facilitate quantitative wood anatomical (QWA) analyses, where the main challenges reside in the detection of a high number of cells, in the intrinsic variability of wood anatomical features, and in the sample quality.
View Article and Find Full Text PDF