Binary and ternary copolymers of acrylonitrile (AN), -butyl acrylate (TBA), and -butyl acrylate (BA) are synthesized through conventional radical polymerization in DMSO in the presence of 2-mercaptoethanol. The thermal behavior of binary and ternary copolymers is studied under argon atmosphere and in air. It is demonstrated that the copolymers of AN contain 1-10 mol.
View Article and Find Full Text PDFLactide is one of the most popular and promising monomers for the synthesis of biocompatible and biodegradable polylactide and its copolymers. The goal of this work was to carry out a full cycle of polylactide production from lactic acid. Process conditions and ratios of reagents were optimized, and the key properties of the synthesized polymers were investigated.
View Article and Find Full Text PDFPolymer composites with various recycled poly(ethylene terephthalate)-based (PET-based) polyester matrices (poly(ethylene terephthalate), copolyesters, and unsaturated polyester resins), similar in properties to the primary ones, can be obtained based on PET glycolysis products after purification. PET glycolysis allows one to obtain bis(2-hydroxyethyl) terephthalate and oligo(ethylene terephthalates) with various molecular weights. A kinetic model of poly(ethylene terephthalate) homogeneous glycolysis under the combined or separate action of oligo(ethylene terephthalates), bis(2-hydroxyethyl) terephthalate, and ethylene glycol is proposed.
View Article and Find Full Text PDFThe review summarizes recent advances in the production of carbon fiber precursors based on melt-spun acrylonitrile copolymers. Approaches to decrease the melting point of polyacrylonitrile and acrylonitrile copolymers are analyzed, including copolymerization with inert comonomers, plasticization by various solvents and additives, among them the eco-friendly ways to use the carbon dioxide and ionic liquids. The methods for preliminary modification of precursors that provides the thermal oxidative stabilization of the fibers without their melting and the reduction in the stabilization duration without the loss of the mechanical characteristics of the fibers are discussed.
View Article and Find Full Text PDFPost-consumer poly(ethylene terephthalate) (PET) waste disposal is an important task of modern industry, and the development of new PET-based value added products and methods for their production is one of the ways to solve it. Membranes for various purposes, in this regard are such products. The aim of the review, on the one hand, is to systematize the known methods of processing PET and copolyesters, highlighting their advantages and disadvantages and, on the other hand, to show what valuable membrane products could be obtained, and in what areas of the economy they can be used.
View Article and Find Full Text PDFA method for producing nanocomposites of unsaturated polyester resins (UPR) based on recycled polyethylene terephthalate (PET) as a matrix has been proposed. The upcycling method involves three successive stages: (1) oligoesters synthesis, (2) simultaneous glycolysis and interchain exchange of oligoesters with PET, (3) interaction of the obtained resins with glycol and maleic anhydride. UPRs were characterized by FTIR spectroscopy and gel permeation chromatography.
View Article and Find Full Text PDFA new method for the recycling of a polyester tire cord under the action of oligoethylene terephthalates, bis(2-hydroxyethyl) terephthalate and ethylene glycol has been proposed. The method involves simultaneous homogeneous glycolysis of polyethylene terephthalate and devulcanization of crumb rubber. Polyester cord and glycolysates were characterized by FTIR spectroscopy and gel permeation chromatography (GPC).
View Article and Find Full Text PDF