Publications by authors named "Alexander G Zestos"

A phenol contains a six-membered, conjugated, aromatic ring bound to a hydroxyl group. These molecules are important in biomedical studies, aromatic food preparation, and petroleum engineering. Traditionally, phenols have been measured with several analytical techniques such as UV-VIS spectroscopy, fluorescence, liquid chromatography, and mass spectrometry.

View Article and Find Full Text PDF

The hormone Neuropeptide Y (NPY) plays critical roles in feeding, satiety, obesity, and weight control. However, its complex peptide structure has hindered the development of fast and biocompatible detection methods. Previous studies utilizing electrochemical techniques with carbon fiber microelectrodes (CFMEs) have targeted the oxidation of amino acid residues like tyrosine to measure peptides.

View Article and Find Full Text PDF

Voltammetry is a powerful electroanalytical tool that makes fast, real-time measurements of neurotransmitters and other molecules. Electroanalytical methods like cyclic, pulse, and stripping voltammetry are useful for qualitative and quantitative examination. Neurochemical sensing has been enhanced using carbon-based electrodes and waveform modification methods that improve sensitivity and stability of electrode performance.

View Article and Find Full Text PDF

Developing efficient, sustainable, and high-performance energy storage systems is essential for advancing various industries, including integrated structural health monitoring. Carbon nanotube yarn (CNTY) supercapacitors have the potential to be an excellent solution for this purpose because they offer unique material properties such as high capacitance, electrical conductivity, and energy and power densities. The scope of the study included fabricating supercapacitors using various materials and characterizing them to determine the capacitive properties, energy, and power densities.

View Article and Find Full Text PDF

Cortisol is a vital steroid hormone that has been known as the "stress hormone", which is elevated during times of high stress and anxiety and has a significant impact on neurochemistry and brain health. The improved detection of cortisol is critically important as it will help further our understanding of stress during several physiological states. Several methods exist to detect cortisol; however, they suffer from low biocompatibility and spatiotemporal resolution, and they are relatively slow.

View Article and Find Full Text PDF

Rapid and sensitive pH measurements with increased spatiotemporal resolution are imperative to probe neurochemical signals and illuminate brain function. We interfaced carbon fiber microelectrode (CFME) sensors with both fast scan cyclic voltammetry (FSCV) and field-effect transistor (FET) transducers for dynamic pH measurements. The electrochemical oxidation and reduction of functional groups on the surface of CFMEs affect their response over a physiologically relevant pH range.

View Article and Find Full Text PDF

Carbon fiber microelectrodes (CFMEs) have been used to detect neurotransmitters and other biomolecules using fast-scan cyclic voltammetry (FSCV) for the past few decades. This technique measures neurotransmitters such as dopamine and, more recently, physiologically relevant neuropeptides. Oxytocin, a pleiotropic peptide hormone, is physiologically important for adaptation, development, reproduction, and social behavior.

View Article and Find Full Text PDF

Municipal and residential water purification rely heavily on activated carbon (AC), but regeneration of AC is costly and cannot be performed at the point-of-use. Clay minerals (CMs) comprise a class of naturally abundant materials with known capacities for analyte adsorbance. However, the gel-forming properties of CMs in aqueous suspension pose problems for these materials being used in water-purification.

View Article and Find Full Text PDF

Carbon fiber microelectrodes (CFMEs) have been extensively used to measure neurotransmitters with fast-scan cyclic voltammetry (FSCV) due to their ability to adsorb cationic monoamine neurotransmitters. Although FSCV, in tandem with CFMEs, provides high temporal and spatial resolution, only single-channel potentiostats and electrodes have been primarily utilized. More recently, the need and use of carbon fiber multielectrode arrays has risen to target multiple brain regions.

View Article and Find Full Text PDF

Fast scan cyclic voltammetry (FSCV) is an analytical technique that was first developed over 30 years ago. Since then, it has been extensively used to detect dopamine using carbon fiber microelectrodes (CFMEs). More recently, electrode modifications and waveform refinement have enabled the detection of a wider variety of neurochemicals including nucleosides such as adenosine and guanosine, neurotransmitter metabolites of dopamine, and neuropeptides such as enkephalin.

View Article and Find Full Text PDF

Carbon fiber-microelectrodes (CFMEs) are considered to be one of the standard electrodes for neurotransmitter detection such as dopamine (DA). DA is physiologically important for many pharmacological and behavioral states, but is readily metabolized on a fast, subsecond timescale. Recently, DA metabolites such as 3-methoxytyramine (3-MT) and 3,4-dihydroxyphenylacetaldehyde (DOPAL) were found to be involved in physiological functions, such as movement control and progressive neuro degeneration.

View Article and Find Full Text PDF

Carbon fiber-microelectrodes (CFMEs) are one of the standards for the detection of neurotransmitters such as dopamine (DA). In this study, we demonstrate that CFMEs electrodeposited with poly (3,4-ethylenedioxythiophene) (PEDOT) in the presence of Nafion exhibit enhanced sensitivity for DA detection. Scanning electron microscopy (SEM) revealed the smooth outer surface morphologies of polymer coatings, which filled in the ridges and grooves of the bare unmodified carbon electrode and energy-dispersive X-ray spectroscopy (EDX) confirmed PEDOT:Nafion incorporation.

View Article and Find Full Text PDF

DNA and RNA have been measured with many techniques but often with relatively long analysis times. In this study, we utilize fast-scan cyclic voltammetry (FSCV) for the subsecond codetection of adenine, guanine, and cytosine, first as free nucleosides, and then within custom synthesized oligos, plasmid DNA, and RNA from the nematode . Previous studies have shown the detection of adenosine and guanosine with FSCV with high spatiotemporal resolution, while we have extended the assay to include cytidine and adenine, guanine, and cytosine in RNA and single- and double-stranded DNA (ssDNA and dSDNA).

View Article and Find Full Text PDF

Carbon fiber-microelectrodes (CFMEs) have been the standard for neurotransmitter detection for over forty years. However, in recent years, there have been many advances of utilizing alternative nanomaterials for neurotransmitter detection with fast scan cyclic voltammetry (FSCV). Recently, carbon nanotube (CNT) yarns have been developed as the working electrode materials for neurotransmitter sensing capabilities with fast scan cyclic voltammetry.

View Article and Find Full Text PDF

For over 30 years, carbon-fiber microelectrodes (CFMEs) have been the standard for neurotransmitter detection. Generally, carbon fibers are aspirated into glass capillaries, pulled to a fine taper, and then sealed using an epoxy to create electrode materials that are used for fast scan cyclic voltammetry testing. The use of bare CFMEs has several limitations, though.

View Article and Find Full Text PDF

Carbon-fiber microelectrodes (CFMEs) have been used for several years for the detection of neurotransmitters such as dopamine. Dopamine is a fundamentally important neurotransmitter and is also metabolized at a subsecond timescale. Recently, several metabolites of dopamine have been shown to be physiologically important such as 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA).

View Article and Find Full Text PDF

Cocaine is a highly abused drug, and cocaine addiction affects millions of individuals worldwide. Cocaine blocks normal uptake function at the dopamine transporter (DAT), thus increasing extracellular dopamine. Currently, no chemical therapies are available to treat cocaine abuse.

View Article and Find Full Text PDF

Epilepsy produces chronic chemical changes induced by altered cellular structures, and acute ones produced by conditions leading into individual seizures. Here, we aim to quantify 24 molecules simultaneously at baseline and during periods of lowered seizure threshold in rats. Using serial hippocampal microdialysis collections starting two weeks after the pilocarpine-induced status epilepticus, we evaluated how this chronic epilepsy model affects molecule levels and their interactions.

View Article and Find Full Text PDF

Carbon nanotube (CNT) yarn and fiber-microelectrodes were developed for neurotransmitter detection using fast scan cyclic voltammetry (FSCV). Fibers were made by suspending CNTs in acid/surfactant and extruding into acetone/polyethyleneimine (PEI) and compared to a CNT yarn. They were FSCV frequency independent for dopamine up to 100 Hz.

View Article and Find Full Text PDF

Epilepsy is a common neurological disease characterized by recurrent unpredictable seizures. For the last 30 years, microdialysis sampling has been used to measure changes in excitatory and inhibitory neurotransmitter concentrations before, during, and after seizures. These advances have fostered breakthroughs in epilepsy research by identifying neurochemical changes associated with seizures and correlating them to electrophysiological data.

View Article and Find Full Text PDF

Beige adipocytes have recently been shown to regulate energy dissipation when activated and help organisms defend against hypothermia and obesity. Prior reports indicate that beige-like adipocytes exist in adult humans and that they may present novel opportunities to curb the global epidemic in obesity and metabolic illnesses. In an effort to identify unique features of activated beige adipocytes, we found that expression of the cholinergic receptor nicotinic alpha 2 subunit (Chrna2) was induced in subcutaneous fat during the activation of these cells and that acetylcholine-producing immune cells within this tissue regulated this signaling pathway via paracrine mechanisms.

View Article and Find Full Text PDF

Carbon-based electrodes have been developed for the detection of neurotransmitters over the past 30 years using voltammetry and amperometry. The traditional electrode for neurotransmitter detection is the carbon fiber microelectrode (CFME). The carbon-based electrode is suitable for neurotransmitter detection due to the fact that it is biocompatible and relatively small in surface area.

View Article and Find Full Text PDF

Microdialysis is a powerful sampling technique used to monitor small molecules in vivo. Despite the many applications of microdialysis sampling, it is limited by the method of analyzing the resulting samples. An emerging technique for analysis of microdialysis samples is liquid chromatography-tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF