Brain-inspired machine intelligence research seeks to develop computational models that emulate the information processing and adaptability that distinguishes biological systems of neurons. This has led to the development of spiking neural networks, a class of models that promisingly addresses the biological implausibility and the lack of energy efficiency inherent to modern-day deep neural networks. In this work, we address the challenge of designing neurobiologically motivated schemes for adjusting the synapses of spiking networks and propose contrastive signal-dependent plasticity, a process which generalizes ideas behind self-supervised learning to facilitate local adaptation in architectures of event-based neuronal layers that operate in parallel.
View Article and Find Full Text PDFThe active inference framework (AIF) is a promising new computational framework grounded in contemporary neuroscience that can produce human-like behavior through reward-based learning. In this study, we test the ability for the AIF to capture the role of anticipation in the visual guidance of action in humans through the systematic investigation of a visual-motor task that has been well-explored-that of intercepting a target moving over a ground plane. Previous research demonstrated that humans performing this task resorted to anticipatory changes in speed intended to compensate for semi-predictable changes in target speed later in the approach.
View Article and Find Full Text PDF