The durability of superhydrophobic coatings under exposure to adverse factors that accompany their exploitation in natural and industrial environments remains a key problem in materials science. One such factor is a notable ozone concentration which can be generated as a result of corona discharge, dielectric barrier discharge, piezoelectric direct discharge, UV light photochemical processes, and others characteristic of the power industry. In this work, the mechanisms of degradation of the superhydrophobic coatings under prolonged exposure to high ozone concentrations at dynamic and nearly static conditions were studied.
View Article and Find Full Text PDFHydrophilic or superhydrophilic materials in some cases are considered to be potentially icephobic due to a low ice-adhesion strength to such materials. Here, the evolution of the properties of a superhydrophilic aluminum alloy with hierarchical roughness, fabricated by laser processing, was studied in contact with water during prolonged cyclic variation in temperature. It was shown that the chemical interaction of rough alumina with water molecules caused the substitution of the surface oxide by polymorphic crystalline gibbsite or bayerite phases while preserving hierarchical roughness.
View Article and Find Full Text PDFHypothesis: Loss of anti-icing properties of slippery liquid-infused porous surfaces (SLIPS) in conditions of repetitive shear stresses is the intrinsic process related to peculiarities of SLIPS structure.
Experiments: The study of the evolution of the ice adhesion strength to superhydrophobic surfaces (SHS) and SLIPS during repetitive icing/de-icing cycles measured by a centrifugal method was supplemented with the estimation of change in capillary pressure inside the pores, and SEM analysis of the effect of multiple ice detachments on surface morphology.
Findings: Obtained data indicated that although for freshly prepared SLIPS, the ice shear adhesion strength at -25 °C was several times lower than for SHS, repetitive icing-deicing cycles resulted in dramatic SLIPS degradation.
In this study, we applied the method of nanosecond laser treatment for the fabrication of superhydrophobic and superhydrophilic magnesium-based surfaces with hierarchical roughness when the surface microrelief is evenly decorated by MgO nanoparticles. The comparative to the bare sample behavior of such surfaces with extreme wettability in contact with dispersions of bacteria cells and in phosphate buffered saline (PBS) was studied. To characterize the bactericidal activity of magnesium samples with different wettability immersed into a bacterial dispersion, we determined the time variation of the planktonic bacterial titer in the dispersion.
View Article and Find Full Text PDFThe bactericidal activity of copper and copper alloys is well appreciated and was already exploited in medical practice in 19th century. However, despite of being an essential nutrient required by organisms to perform life functions, excess copper is extremely toxic and detrimental to health. Recent studies have shown that superhydrophobic surfaces have a significant antibacterial potential for reduction of nosocomial infections.
View Article and Find Full Text PDFA strategy, combining laser chemical modification with laser texturing, followed by chemisorption of the fluorinated hydrophobic agent was used to fabricate the series of superhydrophobic coatings on an aluminum alloy with varied chemical compositions and parameters of texture. It was shown that high content of aluminum oxynitride and aluminum oxide formed in the surface layer upon laser treatment allows solving the problem of enhancement of superhydrophobic coating resistance to abrasive loads. Besides, the multimodal structure of highly porous surface layer leads to self-healing ability of fabricated coatings.
View Article and Find Full Text PDF