Publications by authors named "Alexander Fedotov"

We propose a concept for generation of ultrashort pulses based on transient field-induced plasmonic resonance in nanoparticle composites. Photoionization and free-carrier plasma generation change the susceptibility of nanoparticles on a few-femtosecond scale under the action of the pump pulse. This opens a narrow time window when the system is in plasmonic resonance, which is accompanied by a short burst of the local field.

View Article and Find Full Text PDF

α-tricalcium (α-TCP) phosphate is widely used as an osteoinductive biocompatible material, serving as an alternative to synthetic porous bone materials. The objective of this study is to obtain a highly filled fibrous nonwoven material composed of poly-3-hydroxybutyrate (PHB) and α-TCP and to investigate the morphology, structure, and properties of the composite obtained by the electrospinning method (ES). The addition of α-TCP had a significant effect on the supramolecular structure of the material, allowing it to control the crystallinity of the material, which was accompanied by changes in mechanical properties, FTIR spectra, and XRD curves.

View Article and Find Full Text PDF

The ecological plasticity of aphid populations is determined by their clonal and morphotypic diversity. Clones will be successful when the development of their component morphotypes is optimized. The purpose of this work was to reveal the peculiarities of clonal composition and the developmental characteristics of different summer morphotypes for the rose-grass aphid, (Walk.

View Article and Find Full Text PDF

This paper focuses on the study of the structure and mechanical properties of CoCrCuFeNi high-entropy alloys and their adhesion to single diamond crystals. CoCrCuFeNi alloys were manufactured by the powder metallurgy route, specifically via mechanical alloying of elemental powders, followed by hot pressing. The addition of copper led to the formation of a dual-phase FCC + FCC2 structure.

View Article and Find Full Text PDF

This paper focuses on the microstructure, phase composition, mechanical, tribological and corrosion properties of high-entropy alloys (HEAs) in the CoCrCuFeNi system depending on copper content, which was varied from 0 to 20 at. % with an increment of 5%. CoCrCuFeNi alloys were manufactured by powder metallurgy methods: mechanical alloying and hot pressing of element mixtures.

View Article and Find Full Text PDF

The manuscript presents an algorithm for the optimal estimation of the amplitude and propagation delay time of an ultra-wideband radio signal, in systems for the passive location of fixed targets based on the hybrid RSS/TDoA method in two-dimensional space with two base stations. The optimal estimate is based on the Bayesian strategy of maximum a posteriori probability density, taking into account a priori data on the statistical properties of the Line of Sight radio channel during Gaussian monocycle propagation. The Bayesian Cramer-Rao lower bound (BCRLB) of the delay time and the amplitude estimates for a time-discrete signal are calculated, and the resulting parameter estimate is compared with BCRLB.

View Article and Find Full Text PDF

The development of hyperspectral remote sensing equipment, in recent years, has provided plant protection professionals with a new mechanism for assessing the phytosanitary state of crops. Semantically rich data coming from hyperspectral sensors are a prerequisite for the timely and rational implementation of plant protection measures. This review presents modern advances in early plant disease detection based on hyperspectral remote sensing.

View Article and Find Full Text PDF

Recent studies reveal that carbon nanostructures show anomalous piezoelectric properties when the central symmetry of their structure is violated. Particular focus is given to carbon nanotubes (CNTs) with initial significant curvature of the graphene sheet surface, which leads to an asymmetric redistribution of the electron density. This paper presents the results of studies on the piezoelectric properties of aligned multi-walled CNTs.

View Article and Find Full Text PDF

Substituted calcium phosphates (CaPs) are vital materials for the treatment of bone diseases and repairing and replacement of defects in human hard tissues. In this paper, we present some applications of the rarely used pulsed electron paramagnetic resonance (EPR) and hyperfine interaction spectroscopy approaches [namely, electron spin-echo envelope modulation (ESEEM) and electron-electron double-resonance detected nuclear magnetic resonance (EDNMR)] to investigate synthetic CaPs (hydroxyapatite, tricalcium, and octacalcium phosphate) doped with various cations (Li, Na, Mn, Cu, Fe, and Ba). These resonance techniques provide reliable tools to obtain unique information about the presence and localization of impurity centers and values of hyperfine and quadrupole tensors.

View Article and Find Full Text PDF

Background: Unbiased estimates of penetrance are challenging but critically important to make informed choices about strategies for risk management through increased surveillance and risk-reducing interventions.

Methods: We studied the penetrance and clinical outcomes of 7 breast cancer susceptibility genes (, , , , , , and ) in almost 13 458 participants unselected for personal or family history of breast cancer. We identified 242 female participants with pathogenic or likely pathogenic variants in 1 of the 7 genes for penetrance analyses, and 147 women did not previously know their genetic results.

View Article and Find Full Text PDF

Octacalcium phosphate (OCP), a new-generation bone substitute material, is a considered precursor of the biological bone apatite. The two-layered structure of OCP contains the apatitic and hydrated layers and is intensively involved in ion-exchange surface reactions, which results in OCP hydrolysis to hydroxyapatite and adsorption of ions or molecular groups presented in the environment. During various procedures, such as biomaterial solubility, additive release studies, or the functionalization technique, several model solutions are applied.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how clinicians use genetic test information integrated into electronic health records (EHR) and finds that only 1% of these results are viewed by them.
  • Researchers analyzed EHR data from the eMERGE Network, identifying different user traits that impact engagement levels with the genetic data.
  • The findings suggest a need for better EHR integration strategies and highlight the potential of EHR log data to guide improvements in genomic research and clinician engagement.
View Article and Find Full Text PDF

The aim of the study was the development of three-dimensional (3D) printed gene-activated implants based on octacalcium phosphate (OCP) and plasmid DNA encoding . The first objective of the present work involved design and fabrication of gene-activated bone substitutes based on the OCP and plasmid DNA with gene using 3D printing approach of ceramic constructs, providing the control of its architectonics compliance to the initial digital models. X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and compressive strength analyses were applied to investigate the chemical composition, microstructure, and mechanical properties of the experimental samples.

View Article and Find Full Text PDF

A rigorous mathematical description of the signal reflected from a moving object for radar monitoring tasks using linear frequency modulated continuous wave (LFMCW) microwave radars is proposed. The mathematical model is based on the quasi-relativistic vector transformation of coordinates and Lorentz time. The spatio-temporal structure of the echo signal was obtained taking into account the transverse component of the radar target speed, which made it possible to expand the boundaries of the range of measuring the range and speed of vehicles using LFMCW radars.

View Article and Find Full Text PDF

Accurate remote determination of the object coordinates in 3D space is one of the main questions in many applications. In one of the most popular methods, such determination of the location of an object uses the measurement by receiving an electromagnetic signal transmitted by several spatially distributed base stations (BS). The main problem is that it is necessary to reduce errors and computation time.

View Article and Find Full Text PDF

The calcium phosphate particles can be used as building blocks for fabrication of 3D scaffolds intended for bone tissue engineering. This work presents for the first time a rapid creation of 3D scaffolds using magnetic levitation of calcium phosphate particles. Namely, tricalcium phosphate particles of equal size and certain porosity are used, which undergo the process of recrystallization after magnetic levitational assembly of the scaffold to ensure stitching of the scaffold.

View Article and Find Full Text PDF
Article Synopsis
  • Genomic knowledge is increasingly being incorporated into clinical care, but clinicians need reliable information at the right time to make informed decisions.
  • The electronic health record (EHR) is vital for clinicians, as it can improve outcomes by integrating genomic information, but there are significant challenges in using it effectively for this purpose.
  • Groups like the eMERGE Network and ClinGen are working to identify barriers to using EHRs for genomic medicine and share lessons learned to develop practical solutions and pilot tests for future implementation.
View Article and Find Full Text PDF

Purpose: To provide a validated method to confidently identify exon-containing copy-number variants (CNVs), with a low false discovery rate (FDR), in targeted sequencing data from a clinical laboratory with particular focus on single-exon CNVs.

Methods: DNA sequence coverage data are normalized within each sample and subsequently exonic CNVs are identified in a batch of samples, when the target log ratio of the sample to the batch median exceeds defined thresholds. The quality of exonic CNV calls is assessed by C-scores (Z-like scores) using thresholds derived from gold standard samples and simulation studies.

View Article and Find Full Text PDF

We study the penetration of ultra-intense (intensity I [Formula: see text] 10 W/cm) circularly polarized laser pulses into a thick subcritical plasma layer with accounting for radiation friction. We show that radiation pressure is enhanced due to radiation friction in the direction transverse to the laser pulse propagation, and that for stronger and longer laser pulses this mechanism dominates over the ordinary ponderomotive pressure, thus resulting in a substantionaly stronger charge separation than anticipated previously. We give estimates of the effect and compare them with the results of one and two dimensional particle-in-cell simulations.

View Article and Find Full Text PDF

We examined the Institutional Review Board (IRB) process at 9 academic institutions in the electronic Medical Records and Genomics (eMERGE) Network, for proposed electronic health record-based genomic medicine studies, to identify common questions and concerns. Sequencing of 109 disease related genes and genotyping of 14 actionable variants is being performed in ~28,100 participants from the 9 sites. Pathogenic/likely pathogenic variants in actionable genes are being returned to study participants.

View Article and Find Full Text PDF

In search for a new pro-angiogenic scaffold material suitable for skin bioengineering and grafting therapy, we have fabricated a number of composite sodium alginate (AG)-fibrinogen (FG) sponge scaffolds using the freeze-drying approach. Thrombin was added to drive FG/fibrin conversion, while ε-aminocapronic acid (εAc) was used as antifibrinolytic component. The slow rates of scaffold biodegradation were achieved by using Ca and Mg cations as cross-linking agents.

View Article and Find Full Text PDF

We demonstrate a relatively simple route for three-dimensional (3D) printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate (CP) for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy.

View Article and Find Full Text PDF

Biocompatible calcium phosphate ceramic grafts are able of supporting new bone formation in appropriate environment. The major limitation of these materials usage for medical implants is the absence of accessible methods for their patient-specific fabrication. 3D printing methodology is an excellent approach to overcome the limitation supporting effective and fast fabrication of individual complex bone substitutes.

View Article and Find Full Text PDF

Bioceramics are used to treat bone defects but in general do not induce formation of new bone, which is essential for regeneration process. Many aspects related to bioceramics synthesis, properties and biological response that are still unknown and, there is a great need for further development. In the most recent research efforts were aimed on creation of materials from biological precursors of apatite formation in humans.

View Article and Find Full Text PDF

Biocompatible ceramic fillers are capable of sustaining bone formation in the proper environment. The major drawback of these scaffolding materials is the absence of osteoinductivity. To overcome this limitation, bioengineered scaffolds combine osteoconductive components (biomaterials) with osteogenic features such as cells and growth factors.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9dmhqdtqueffv0lun3d2c4kc22k4chft): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once