Acta Oncol
April 2024
Background: Immune checkpoint inhibitors (ICIs) have significantly improved outcomes in various cancers. ICI treatment is associated with the incidence of immune-related adverse events (irAEs) which can affect any organ. Data on irAEs occurrence in relation to sex- differentiation and their association with gender-specific factors are limited.
View Article and Find Full Text PDFCancer, responsible for approximately 10 million lives annually, urgently requires innovative treatments, as well as solutions to mitigate the limitations of traditional chemotherapy, such as long-term adverse side effects and multidrug resistance. This review focuses on Carbon Dots (CDs), an emergent class of nanoparticles (NPs) with remarkable physicochemical and biological properties, and their burgeoning applications in bioimaging and as nanocarriers in drug delivery systems for cancer treatment. The review initiates with an overview of NPs as nanocarriers, followed by an in-depth look into the biological barriers that could affect their distribution, from barriers to administration, to intracellular trafficking.
View Article and Find Full Text PDFBackground: An increasing number of anti-cancer therapeutic agents target specific mutant proteins that are expressed by many different tumor types. Successful use of these therapies is dependent on the presence or absence of somatic mutations within the patient's tumor that can confer clinical efficacy or drug resistance.
Methods: The aim of our study was to determine the type, frequency, overlap and functional proteomic effects of potentially targetable recurrent somatic hotspot mutations in 47 cancer-related genes in multiple disease sites that could be potential therapeutic targets using currently available agents or agents in clinical development.
Background: The Cancer Genome Atlas analysis revealed that somatic EGFR, receptor tyrosine-protein kinase erbB-2 (ERBB2), Erb-B2 receptor tyrosine kinase 3 (ERBB3) and Erb-B2 receptor tyrosine kinase 4 (ERBB4) gene mutations (ERBB family mutations) occur alone or co-occur with somatic mutations in the gene encoding the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (PIK3CA) in 19% of human epidermal growth factor receptor 2 (HER2)-positive breast cancers. Because ERBB family mutations can activate the PI3K/AKT pathway and likely have similar canonical signalling effects to PI3K pathway mutations, we investigated their combined impact on response to neoadjuvant HER2-targeted therapies.
Methods: Baseline tumour biopsies were available from 74 patients with HER2-positive breast cancer who were enrolled in the phase II TCHL neoadjuvant study (ICORG 10-05) assessing TCH (docetaxel, carboplatin, trastuzumab) (n = 38) versus TCL (docetaxel, carboplatin, lapatinib) (n = 10) versus TCHL (docetaxel, carboplatin, trastuzumab, lapatinib) (n = 40), each for six cycles.