Publications by authors named "Alexander Erlich"

Final organ size and shape result from volume expansion by growth and shape changes by contractility. Complex morphologies can also arise from differences in growth rate between tissues. We address here how differential growth guides the morphogenesis of the growing Drosophila wing imaginal disc.

View Article and Find Full Text PDF
Article Synopsis
  • Cells and tissues undergo shape changes for functional purposes and in response to diseases, driven by internal molecular mechanisms like crosslinkers and ion pumps.
  • The concept of prestress, resulting from contractile or growth activities, is essential for understanding how these shape changes occur in living systems, particularly in complex structures such as cell networks and tissue aggregates.
  • The review identifies several categories of prestress distributions, including heterogeneous, anisotropic, and differential, and introduces a new concept of topological prestress related to changes in tissue microstructure.
View Article and Find Full Text PDF

The giant Amazonian waterlily (genus ) produces the largest floating leaves in the plant kingdom. The leaves' notable vasculature has inspired artists, engineers, and architects for centuries. Despite the aesthetic appeal and scale of this botanical enigma, little is known about the mechanics of these extraordinary leaves.

View Article and Find Full Text PDF

In biological systems, the growth of cells, tissues and organs is influenced by mechanical cues. Locally, cell growth leads to a mechanically heterogeneous environment as cells pull and push their neighbours in a cell network. Despite this local heterogeneity, at the tissue level, the cell network is remarkably robust, as it is not easily perturbed by changes in the mechanical environment or the network connectivity.

View Article and Find Full Text PDF

The primary exchange units in the human placenta are terminal villi, in which fetal capillary networks are surrounded by a thin layer of villous tissue, separating fetal from maternal blood. To understand how the complex spatial structure of villi influences their function, we use an image-based theoretical model to study the effect of tissue metabolism on the transport of solutes from maternal blood into the fetal circulation. For solute that is taken up under first-order kinetics, we show that the transition between flow-limited and diffusion-limited transport depends on two new dimensionless parameters defined in terms of key geometric quantities, with strong solute uptake promoting flow-limited transport conditions.

View Article and Find Full Text PDF

Across mammalian species, solute exchange takes place in complex microvascular networks. In the human placenta, the primary exchange units are terminal villi that contain disordered networks of fetal capillaries and are surrounded externally by maternal blood. We show how the irregular internal structure of a terminal villus determines its exchange capacity for diverse solutes.

View Article and Find Full Text PDF

Biological growth is often driven by mechanical cues, such as changes in external pressure or tensile loading. Moreover, it is well known that many living tissues actively maintain a preferred level of mechanical internal stress, called the mechanical homeostasis. The tissue-level feedback mechanism by which changes in the local mechanical stresses affect growth is called a growth law within the theory of morphoelasticity, a theory for understanding the coupling between mechanics and geometry in growing and evolving biological materials.

View Article and Find Full Text PDF

The idea that physical processes involved in biological development underlie morphogenetic rules and channel morphological evolution has been central to the rise of evolutionary developmental biology. Here, we explore this idea in the context of seashell morphogenesis. We show that a morphomechanical model predicts the effects of variations in shell shape on the ornamental pattern in ammonites, a now extinct group of cephalopods with external chambered shell.

View Article and Find Full Text PDF