Purpose: Cancer treatment is limited by inaccurate predictors of patient-specific therapeutic response. Therefore, some patients are exposed to unnecessary side effects and delays in starting effective therapy. A clinical tool that predicts treatment sensitivity for individual patients is needed.
View Article and Find Full Text PDFmutations are common in clinical molecular profiling, yet an effective means to target these cancers has yet to be developed. MTORC1 inhibitors are often used off-label for patients with mutant cancers with only limited data to support this approach. Here we describe a cohort of patients treated with cancers possessing mutations activating the PI3K signaling cascade with minimal benefit to treatment with the MTORC1 inhibitor everolimus.
View Article and Find Full Text PDFThe phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling.
View Article and Find Full Text PDFHuman colorectal cancers often possess multiple mutations, including three to six driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation.
View Article and Find Full Text PDF