Annu Int Conf IEEE Eng Med Biol Soc
November 2021
By being predicated on supervised machine learning, pattern recognition approaches to myoelectric prosthesis control require electromyography (EMG) training data collected concurrently with every detectable motion. Within this framework, calibration protocols for simultaneous control of multifunctional prosthetic hands rapidly become prohibitively long-the number of unique motions grows geometrically with the number of controllable degrees of freedom (DoFs). This paper proposes a technique intended to circumvent this combinatorial explosion.
View Article and Find Full Text PDFProcessing myoelectrical activity in the forearm has for long been considered a promising framework to allow transradial amputees to control motorized prostheses. In spite of expectations, contemporary muscle-computer interfaces built for this purpose typically fail to satisfy one or more important desiderata, such as accuracy, robustness, and/or naturalness of control, in part due to difficulties in acquiring high-quality signals continuously outside laboratory conditions. In light of such problems, surgically implanted electrodes have been made a viable option that allows for long-term acquisition of intramuscular electromyography (iEMG) measurements of spatially precise origin.
View Article and Find Full Text PDFBackground: Processing the surface electromyogram (sEMG) to decode movement intent is a promising approach for natural control of upper extremity prostheses. To this end, this paper introduces and evaluates a new framework which allows for simultaneous and proportional myoelectric control over multiple degrees of freedom (DoFs) in real-time. The framework uses multitask neural networks and domain-informed regularization in order to automatically find nonlinear mappings from the forearm sEMG envelope to multivariate and continuous encodings of concurrent hand- and wrist kinematics, despite only requiring categorical movement instruction stimuli signals for calibration.
View Article and Find Full Text PDFConvolutional Neural Networks (CNNs) have been subject to extensive attention in the pattern recognition literature due to unprecedented performance in tasks of information extraction from unstructured data. Whereas available methods for supervised training of a CNN with a given network topology are well-defined with rigorous theoretical justification, procedures for the initial selection of topology are currently not. Work incorporating selection of the CNN topology has instead substantially been guided by the domain-specific expertise of the creator(s), followed by iterative improvement via empirical evaluation.
View Article and Find Full Text PDFIn contemporary muscle-computer interfaces for upper limb prosthetics there is often a trade-off between control robustness and range of executable movements. As a very low movement error rate is necessary in practical applications, this often results in a quite severe limitation of controllability; a problem growing ever more salient as the mechanical sophistication of multifunctional myoelectric prostheses continues to improve. A possible remedy for this could come from the use of multi-label machine learning methods, where complex movements can be expressed as the superposition of several simpler movements.
View Article and Find Full Text PDF