Publications by authors named "Alexander E Kostyunin"

Percutaneous coronary intervention, a common treatment for atherosclerotic coronary artery lesions, occasionally results in perforations associated with increased mortality rates. Stents coated with a bioresorbable polymer membrane may offer an effective solution for sealing coronary artery perforations. Additionally, such coatings could be effective in mitigating neointimal hyperplasia within the vascular lumen and correcting symptomatic aneurysms.

View Article and Find Full Text PDF

Background Whereas the risk factors for structural valve degeneration (SVD) of glutaraldehyde-treated bioprosthetic heart valves (BHVs) are well studied, those responsible for the failure of BHVs fixed with alternative next-generation chemicals remain largely unknown. This study aimed to investigate the reasons behind the development of SVD in ethylene glycol diglycidyl ether-treated BHVs. Methods and Results Ten ethylene glycol diglycidyl ether-treated BHVs excised because of SVD, and 5 calcified aortic valves (AVs) replaced with BHVs because of calcific AV disease were collected and their proteomic profile was deciphered.

View Article and Find Full Text PDF

An association between high serum calcium/phosphate and cardiovascular events or death is well-established. However, a mechanistic explanation of this correlation is lacking. Here, we examined the role of calciprotein particles (CPPs), nanoscale bodies forming in the human blood upon its supersaturation with calcium and phosphate, in cardiovascular disease.

View Article and Find Full Text PDF

Currently, an ultrastructural analysis of cardiovascular tissues is significantly complicated. Routine histopathological examinations and immunohistochemical staining suffer from a relatively low resolution of light microscopy, whereas the fluorescence imaging of plaques and bioprosthetic heart valves yields considerable background noise from the convoluted extracellular matrix that often results in a low signal-to-noise ratio. Besides, the sectioning of calcified or stent-expanded blood vessels or mineralised heart valves leads to a critical loss of their integrity, demanding other methods to be developed.

View Article and Find Full Text PDF

The implantation of bioprosthetic heart valves (BHVs) is increasingly becoming the treatment of choice in patients requiring heart valve replacement surgery. Unlike mechanical heart valves, BHVs are less thrombogenic and exhibit superior hemodynamic properties. However, BHVs are prone to structural valve degeneration (SVD), an unavoidable condition limiting graft durability.

View Article and Find Full Text PDF

Calcific aortic valve disease (CAVD), previously thought to represent a passive degeneration of the valvular extracellular matrix (VECM), is now regarded as an intricate multistage disorder with sequential yet intertangled and interacting underlying processes. Endothelial dysfunction and injury, initiated by disturbed blood flow and metabolic disorders, lead to the deposition of low-density lipoprotein cholesterol in the VECM further provoking macrophage infiltration, oxidative stress, and release of pro-inflammatory cytokines. Such changes in the valvular homeostasis induce differentiation of normally quiescent valvular interstitial cells (VICs) into synthetically active myofibroblasts producing excessive quantities of the VECM and proteins responsible for its remodeling.

View Article and Find Full Text PDF