Publications by authors named "Alexander E Hramov"

Article Synopsis
  • Hidden data recovery is important in fields like neurophysiology due to issues with incomplete or corrupted experimental data.
  • This study examines the use of reservoir computing (RC) for recovering hidden data from both model systems and real EEG signals, finding that RC is more effective than linear regression (LR) in these cases.
  • The research suggests that RC can enhance data recovery processes, leading to improved accuracy and reliability in neurophysiological studies, which is critical for scientific analysis.
View Article and Find Full Text PDF

Self-organized bistability (SOB) stands as a critical behavior for the systems delicately adjusting themselves to the brink of bistability, characterized by a first-order transition. Its essence lies in the inherent ability of the system to undergo enduring shifts between the coexisting states, achieved through the self-regulation of a controlling parameter. Recently, SOB has been established in a scale-free network as a recurrent transition to a short-living state of global synchronization.

View Article and Find Full Text PDF

We present a novel method for analyzing brain functional networks using functional magnetic resonance imaging data, which involves utilizing consensus networks. In this study, we compare our approach to a standard group-based method for patients diagnosed with major depressive disorder (MDD) and a healthy control group, taking into account different levels of connectivity. Our findings demonstrate that the consensus network approach uncovers distinct characteristics in network measures and degree distributions when considering connection strengths.

View Article and Find Full Text PDF

Experiments show activation of the left dorsolateral prefrontal cortex (DLPFC) in motor imagery (MI) tasks, but its functional role requires further investigation. Here, we address this issue by applying repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC and evaluating its effect on brain activity and the latency of MI response. This is a randomized, sham-controlled EEG study.

View Article and Find Full Text PDF

We address the interpretability of the machine learning algorithm in the context of the relevant problem of discriminating between patients with major depressive disorder (MDD) and healthy controls using functional networks derived from resting-state functional magnetic resonance imaging data. We applied linear discriminant analysis (LDA) to the data from 35 MDD patients and 50 healthy controls to discriminate between the two groups utilizing functional networks' global measures as the features. We proposed the combined approach for feature selection based on statistical methods and the wrapper-type algorithm.

View Article and Find Full Text PDF

Coherent activations of brain neuron networks underlie many physiological functions associated with various behavioral states. These synchronous fluctuations in the electrical activity of the brain are also referred to as brain rhythms. At the cellular level, rhythmicity can be induced by various mechanisms of intrinsic oscillations in neurons or the network circulation of excitation between synaptically coupled neurons.

View Article and Find Full Text PDF

Artificial intelligence (AI) has revolutionized numerous industries, including medicine. In recent years, the integration of AI into medical practices has shown great promise in enhancing the accuracy and efficiency of diagnosing diseases, predicting patient outcomes, and personalizing treatment plans. This paper aims at the exploration of the AI-based medicine research using network approach and analysis of existing trends based on PubMed.

View Article and Find Full Text PDF

Forecasting a system's behavior is an essential task encountering the complex systems theory. Machine learning offers supervised algorithms, e.g.

View Article and Find Full Text PDF

Epilepsy is one of the brightest manifestations of extreme behavior in living systems. Extreme epileptic events are seizures, that arise suddenly and unpredictably. Usually, treatment strategies start by analyzing brain activity during the seizures revealing their type and onset mechanisms.

View Article and Find Full Text PDF

Large-scale functional connectivity is an important indicator of the brain's normal functioning. The abnormalities in the connectivity pattern can be used as a diagnostic tool to detect various neurological disorders. The present paper describes the functional connectivity assessment based on artificial intelligence to reveal age-related changes in neural response in a simple motor execution task.

View Article and Find Full Text PDF

We have proposed and studied both numerically and experimentally a multistable system based on a self-sustained Van der Pol oscillator coupled to passive oscillatory circuits. The number of passive oscillators determines the number of multistable oscillatory regimes coexisting in the proposed system. It is shown that our system can be used in robotics applications as a simple model for a central pattern generator (CPG).

View Article and Find Full Text PDF

Incorporating brain-computer interfaces (BCIs) into daily life requires reducing the reliance of decoding algorithms on the calibration or enabling calibration with the minimal burden on the user. A potential solution could be a pre-trained decoder demonstrating a reasonable accuracy on the naive operators. Addressing this issue, we considered ambiguous stimuli classification tasks and trained an artificial neural network to classify brain responses to the stimuli of low and high ambiguity.

View Article and Find Full Text PDF

In this paper, we used an EEG system to monitor and analyze the cortical activity of children and adults at a sensor level during cognitive tasks in the form of a Schulte table. This complex cognitive task simultaneously involves several cognitive processes and systems: visual search, working memory, and mental arithmetic. We revealed that adults found numbers on average two times faster than children in the beginning.

View Article and Find Full Text PDF

In this study, we address the issue of whether vibrotactile feedback can enhance the motor cortex excitability translated into the plastic changes in local cortical areas during motor imagery (MI) BCI-based training. For this purpose, we focused on two of the most notable neurophysiological effects of MI - the event-related desynchronization (ERD) level and the increase in cortical excitability assessed with navigated transcranial magnetic stimulation (nTMS). For TMS navigation, we used individual high-resolution 3D brain MRIs.

View Article and Find Full Text PDF

Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task.

View Article and Find Full Text PDF

Extreme events are rare and sudden abnormal deviations of the system's behavior from a typical state. Statistical analysis reveals that if the time series contains extreme events, its distribution has a heavy tail. In dynamical systems, extreme events often occur due to developing instability preceded by noise amplification.

View Article and Find Full Text PDF

In this study, voluntary and involuntary visual attention focused on different interpretations of a bistable image, were investigated using magnetoencephalography (MEG). A Necker cube with sinusoidally modulated pixels' intensity in the front and rear faces with frequencies 6.67 Hz (60/9) and 8.

View Article and Find Full Text PDF

The problem of revealing age-related distinctions in multichannel electroencephalograms (EEGs) during the execution of motor tasks in young and elderly adults is addressed herein. Based on the detrended fluctuation analysis (DFA), differences in long-range correlations are considered, emphasizing changes in the scaling exponent α. Stronger responses in elderly subjects are confirmed, including the range and rate of increase in α.

View Article and Find Full Text PDF

Age-related changes in the human brain functioning crucially affect the motor system, causing increased reaction time, low ability to control and execute movements, difficulties in learning new motor skills. The lifestyle and lowered daily activity of elderly adults, along with the deficit of motor and cognitive brain functions, might lead to the developed ambidexterity, i.e.

View Article and Find Full Text PDF

The transition from asynchronous dynamics to generalized chaotic synchronization and then to completely synchronous dynamics is known to be accompanied by on-off intermittency. We show that there is another (second) type of the transition called jump intermittency which occurs near the boundary of generalized synchronization in chaotic systems with complex two-sheeted attractors. Although this transient behavior also exhibits intermittent dynamics, it differs sufficiently from on-off intermittency supposed hitherto to be the only type of motion corresponding to the transition to generalized synchronization.

View Article and Find Full Text PDF

Decision-making requires the accumulation of sensory evidence. However, in everyday life, sensory information is often ambiguous and contains decision-irrelevant features. This means that the brain must disambiguate sensory input and extract decision-relevant features.

View Article and Find Full Text PDF

Sensor-level human brain activity is studied during real and imaginary motor execution using functional near-infrared spectroscopy (fNIRS). Blood oxygenation and deoxygenation spatial dynamics exhibit pronounced hemispheric lateralization when performing motor tasks with the left and right hands. This fact allowed us to reveal biomarkers of hemodynamical response of the motor cortex on the motor execution, and use them for designing a sensing method for classification of the type of movement.

View Article and Find Full Text PDF

Neuronal brain network is a distributed computing system, whose architecture is dynamically adjusted to provide optimal performance of sensory processing. A small amount of visual information needed effortlessly be processed, activates neural activity in occipital and parietal areas. Conversely, a visual task which requires sustained attention to process a large amount of sensory information, involves a set of long-distance connections between parietal and frontal areas coordinating the activity of these distant brain regions.

View Article and Find Full Text PDF

Behavioral experiments evidence that attention is not maintained at a constant level, but fluctuates with time. Recent studies associate such fluctuations with dynamics of attention-related cortical networks, however the exact mechanism remains unclear. To address this issue, we consider functional neuronal interactions during the accomplishment of a reaction time (RT) task which requires sustained attention.

View Article and Find Full Text PDF